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ABSTRACT
Identifying the same internet user across devices or over time
is often infeasible. This presents a problem for online experi-
ments, as it precludes person-level randomization. Random-
ization must instead be done using imperfect proxies for peo-
ple, like cookies, email addresses, or device identifiers. Users
may be partially treated and partially untreated as some of
their cookies are assigned to the test group and some to the
control group, complicating statistical inference. We show
that the estimated treatment e↵ect in a cookie-level experi-
ment converges to a weighted average of the marginal e↵ects
of treating more of a user’s cookies. If the marginal e↵ects
of cookie treatment exposure are positive and constant, it
underestimates the true person-level e↵ect by a factor equal
to the number of cookies per person. Using two separate
datasets—cookie assignment data from Atlas and advertis-
ing exposure and purchase data from Facebook—we empir-
ically quantify the di↵erences between cookie and person-
level advertising e↵ectiveness experiments. The e↵ects are
substantial: cookie tests underestimate the true person-level
e↵ects by a factor of about three, and require two to three
times the number of people to achieve the same power as a
test with perfect treatment assignment.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics; G.3 [Mathematics of Computing]:
Probability and Statistics—Experimental design

General Terms
Economics
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Advertising e↵ectiveness, causal inference, cookies, experi-
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1. INTRODUCTION
One major limitation of online experiments is that the ex-

perimenter often does not have complete control over who is
exposed to the treatment [7, 8, 9, 28]. In contrast to exper-
iments conducted in person, in which it is straightforward
to assign non-overlapping groups of people to the test and
control groups, the online experimenter often does not have
the ability to identify the same person across devices or over
time. She must instead resort to randomizing using a proxy
which imperfectly identifies users, like a cookie, an email
address, or an account or device identifier.

Cookies are the most common technology used to identify
online users and devices making cookie-based experiments
especially popular among researchers and technology com-
panies [11, 21, 25, 28]. A cookie is a small piece of data sent
from the website and stored on the user’s browser that is sent
back to the website every time the user returns. The same
user may generate multiple cookies by clearing his cookies
and being assigned new ones (cookie churn), using multi-
ple browsers, or visiting the same website on di↵erent de-
vices. Additionally, some browsers will delete cookies on
crashing, remove older cookies, and cookies can become cor-
rupted leading to the same user using the same browser be-
ing assigned di↵erent cookies. If treatment assignment is
randomized at the cookie level, the same user may some-
times be assigned to the test group and sometimes to the
control group, depending on when he visits the website and
the browser or device he is using. People with cookies in the
test group are only partially treated, and those with cookies
in the control group are only partially untreated. This com-
plication makes it unclear what information the comparison
of test and control cookie outcomes provides.

The same problem arises with experiments using other
proxies like email addresses, device identifiers, or user ac-
counts, as a single user may be assigned to di↵erent prox-
ies and thus di↵erent conditions in the experiment. In this
paper we focus on cookies since it is the most widely used
identity technology on the internet, especially for advertisers
who want to distinguish customers, but our analysis and re-
sults apply generally to any proxy that doesn’t have perfect
assignment to users.

We show that the test-control cookie comparison esti-
mates a weighted average of the marginal e↵ects on a user
of having an additional cookie exposed to the treatment.
In contrast to the ideal experiment in which users can be
perfectly assigned to test or control, this weighted average
depends on the probability that a cookie is assigned to the
test group. Changing the test group assignment probabil-
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ity changes the quantity estimated. Failing to replicate the
results of an experiment which used a di↵erent assignment
probability does not necessarily indicate that the initial re-
sults are invalid.

If the marginal treatment e↵ects are all positive, i.e. treat-
ing more of the user’s cookies always increases the mean
of the outcome variable, then the test-control cookie com-
parison underestimates the person-level treatment e↵ect in
which users are randomized into test and control groups.
This provides a formal justification for the folk wisdom that
cookie-based experiments tend to attenuate the true treat-
ment e↵ects. If in addition to being positive the marginal
treatment e↵ects are constant (or if they are a�ne and cook-
ies are assigned to the test group with probability 0.5), the
person-level treatment e↵ect is greater than the test-control
cookie comparison by a factor equal to the number of cookies
per user. This result is intuitive: as the number of cookies
increases the average di↵erence in outcomes between test
and control cookies becomes smaller.

We use a unique dataset to quantify how much imperfect
treatment assignment matters in practice in the context of
measuring advertising e↵ectiveness. Atlas1 by Facebook al-
lows advertisers to serve ads across third-party websites and
mobile apps. Atlas cookies contain a one-way hashed version
of the individual’s Facebook identifier for Facebook users.
Because we observe both the Atlas cookie assigned to the
user at the time of the ad impression as well as the hashed
Facebook identifier for Facebook users, we have ground truth
data on cookie assignment distributions.

We also use data from Facebook’s Conversion Lift2 prod-
uct, which allows advertisers to run advertising e↵ectiveness
experiments. Facebook assigns a randomly selected group
of users to a control group, which is not exposed to an ad-
vertising campaign, and compares their outcomes to the test
group, which is eligible to see the campaign. By comparing
online sales outcomes between test and control users, adver-
tisers can determine how e↵ective the advertisement is in
increasing sales.

These two datasets–Atlas data on cookie assignments, and
Conversion Lift data on ad exposure and sales–together en-
able us to simulate the e↵ect of imperfect treatment assign-
ment in ad e↵ectiveness studies. The e↵ects estimated in ad
experiments with imperfect treatment assignment are rarely
of inherent interest. Rather, the real e↵ects of interest are
typically the e↵ects of fully rolling out the ad campaign vs.
not advertising, as knowing those e↵ects enables advertisers
to determine if their ads are giving a su�cient return on
investment. Equivalently, they are the e↵ects that would be
estimated by an experiment with perfect treatment assign-
ment.

We find that cookie-based tests underestimate these person-
level e↵ects by a factor of around three. In addition, to
achieve the same level of statistical power in a cookie-level
experiment as a person-level experiment, around two to three
times greater sample sizes are needed. Di�culties in detect-
ing statistically significant e↵ects in online experiments may
be due to imperfect treatment assignment, rather than the
true underlying e↵ect sizes being small.

This paper complements the econometrics literature on
instrumental variables and imperfect treatment assignment

1http://atlassolutions.com/
2https://www.facebook.com/business/news/conversion-
lift-measurement

[1, 2, 4, 13, 14, 16]. The literature focuses on the case where
the experimenter is only partially able to control individuals’
treatment status. A physician may prescribe a drug, for ex-
ample, but is unable to force his patient to take it. Our paper
di↵ers from this setting in that the experimenter can fully
control individuals’ treatment status for any of their cookies,
but the fact that people have multiple cookies means they
may end up being only partially treated or untreated. To
the best of our knowledge, we are the first to formally treat
and empirically analyze the problem of imperfect treatment
assignment due to di�culties in identifying people online,
rather than di�culties in influencing their behavior.

Our paper is also closely related to the growing body of
work on online advertising e↵ectiveness. A large number of
prior studies [10, 15, 17, 23, 25, 27, 30] run advertising field
experiments at the cookie level, and our work quantifies the
potential measurement error in these studies from multiple
cookie assignments. Other studies run advertising field ex-
periments at the person level [26, 18, 3, 24], and our results
indicate that treatment e↵ects should not be directly com-
pared between cookie and person-level experiments. Lewis
et al. [24] find that online advertising campaigns often re-
quire relatively large samples to detect a significant e↵ect on
sales, highlighting the need to analyze the loss in statistical
power from cookie assignments.

Because it is so rare to find data on cookie assignments
by person, we hope to provide researchers with some context
for understanding the extent of the bias in their cookie-level
studies, if they believe the users in their study are similar
to the population of U.S. Facebook users.

Finally, this work contributes to the rapidly growing lit-
erature on the challenges of implementing experiments on-
line [6, 20, 22, 24]. There are several examples of how
causal inference can be biased in online experiments in-
cluding, among others, interference between test and con-
trol groups [5], correlated behaviors biasing observational
studies [25], and “carryover” e↵ects [20]. We demonstrate
another major implementation challenge in that treatment
e↵ects are substantially attenuated when comparing cookie-
level outcomes.

2. MODEL SETUP
Each person i 2 {1, . . . ,m} generates n cookies. Each

of i’s cookies is independently assigned to be treated with
probability p. Person i’s outcome associated with cookie k
if he were to have e treated cookies in total is a random
variable denoted yi,k,e. Across k the yi,k,e’s are distributed
with mean µi(e), so that µi(e) is i’s expected cookie-level
outcome when e of his cookies have been treated. Define the
random variable Ti,k where Ti,k = 1 if i’s kth cookie has been
selected for treatment, and Ti,k = 0 otherwise. We assume
that yi,k,e and Ti,k are independent: given i’s number of
treated cookies, his treatment and control cookies’ outcomes
are the same on average.

Let ei =
Pn

k=1 Ti,k denote the number of treatments that i
receives. For each of i’s cookies, the researcher observes the
outcome variables yi,1,ei , yi,2,ei , . . . , yi,n,ei associated with
the n cookies. For example, in an advertising experiment
run by an online retailer, the outcome variable of interest,
yi,k,ei , might be the amount of spending attributable to user
i’s kth cookie, given that user i has seen ei advertisements
across his n devices, each of which has a di↵erent cookie.
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Figure 1: Treatment Assignment
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Random cookie assignment to treatment and
control groups. Each row of cookies belongs to the
same person. Red squares are treated cookies, gray
squares are untreated cookies.

The cookie-level treatment e↵ect estimator, bC, is the av-
erage over treatment cookies of their associated outcomes,
minus the corresponding average over control cookies:

bC ⌘
Pm

i=1

Pn
k=1 Ti,kyi,k,eiPm
i=1 ei

�
Pm

i=1

Pn
k=1(1� Ti,k)yi,k,eiPm
i=1(n� ei)

.

Although the researcher can calculate the sum of outcomes
associated with all test cookies,

Pm
i=1

Pn
k=1 Ti,kyi,k,ei , she

cannot calculate the summands
Pn

k=1 Ti,kyi,k,ei for any i
(and similarly for control outcomes). This is because she
has no way of identifying which cookies or outcomes are as-
sociated with the same person. Figure 1 shows a simple
example where m = 4 and n = 5. In terms of the figure, bC
is the average of the values in red squares minus the aver-
age of the values in gray squares. The researcher observes
whether an outcome is red or gray, but not whether two out-
comes belong to the same row. What does the cookie-level
treatment e↵ect estimator estimate, and how does it relate
to the expected marginal e↵ects E[µi(j + 1) � µi(j)], or to
the e↵ect of fully treating users, E[µi(n)� µi(0)]?

3. MODEL ANALYSIS
We begin by proving that the cookie-level estimator bC

converges to a weighted average of the expected marginal
e↵ects E[µi(j +1)� µi(j)], where the weights are the prob-
abilities of a binomial distribution.

Proposition 1. Let X be a random variable with dis-
tribution B(n � 1, p), independent of the µi, and assume

the expectations E[µi(e)] are finite for all e. Then bC !p

E[µi(X + 1)� µi(X)].

Proof. By the weak law of large numbers and the con-
tinuous mapping theorem, we have

m�1 Pm
i=1

Pn
k=1 Ti,kyi,k,ei

m�1
Pm

i=1 ei
�

m�1 Pm
i=1

Pn
k=1(1� Ti,k)yi,k,ei

m�1
Pm

i=1(n� ei)

!p
E[

Pn
k=1 Ti,kyi,k,ei ]

E[ei]
�

E[
Pn

k=1(1� Ti,k)yi,k,ei ]

E[n� ei]
.

Expectations in expressions involving people (indexed by i)
and cookies (indexed by k) are over both variables. The

probability limit on the right hand side can be rewritten as
Pn

j=0 P (ei = j)E[
Pn

k=1 Ti,kyi,k,ei |ei = j]
Pn

j=0 P (ei = j)j

�
Pn

j=0 P (ei = j)E[
Pn

k=1(1� Ti,k)yi,k,ei |ei = j]
Pn

j=0 P (ei = j)(n� j)

=

Pn
j=0 P (ei = j)jE[µi(j)]Pn

j=0 P (ei = j)j
�

Pn
j=0 P (ei = j)(n� j)E[µi(j)]Pn

j=0 P (ei = j)(n� j)
,

where the first step iterates expectations over ei, and the
second uses independence of yi,k,e and Ti,k, as well as the
fact that ei =

Pn
k=1 Ti,k.

Given that ei ⇠ B(n, p), the last expression can be rewrit-
ten as follows:
Pn

j=0 P (ei = j)jE[µi(j)]Pn
j=0 P (ei = j)j

�
Pn

j=0 P (ei = j)(n� j)E[µi(j)]Pn
j=0 P (ei = j)(n� j)

=
nX

j=0

n!
j!(n� j)!

pj(1� p)n�j j
np

E[µi(j)]

�
nX

j=0

n!
j!(n� j)!

pj(1� p)n�j n� j
n(1� p)

E[µi(j)]

=
nX

j=1

(n� 1)!
(j � 1)!(n� j)!

pj�1(1� p)n�jE[µi(j)]

�
n�1X

j=0

(n� 1)!
j!(n� j � 1)!

pj(1� p)n�j�1E[µi(j)]

=
n�1X

j=0

(n� 1)!
j!(n� j � 1)!

pj(1� p)n�j�1E[µi(j + 1)]

�
n�1X

j=0

(n� 1)!
j!(n� j � 1)!

pj(1� p)n�j�1E[µi(j)]

=
n�1X

j=0

(n� 1)!
j!(n� j � 1)!

pj(1� p)n�j�1(E[µi(j + 1)]� E[µi(j)])

= E[µi(X + 1)� µi(X)],

where X ⇠ B(n� 1, p).

This result shows that the cookie-based measure estimates
a weighted average of all the marginal e↵ects of an extra
treatment exposure, where the weights are given by the
probability mass function of a B(n� 1, p) random variable.
More weight is placed on the marginal e↵ects at the likely
levels of treatment exposure. This is rather intuitive–if p
were close to one, then most of the test and control cook-
ies would belong to people who have been treated a large
number of times, and the experiment can not be very infor-
mative about the marginal e↵ects of the first few exposures.
The next corollary is immediate from Proposition 1.
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Corollary 1. If there is a constant marginal e↵ect of
receiving a treatment cookie instead of a control cookie (i.e. if
E[µi(j+1)]�E[µi(j)] does not depend on j), the cookie-based
measure converges in probability to this marginal e↵ect.

Di↵erent treatment probabilities p result in di↵erent weight-
ings of the marginal e↵ects, and therefore estimate di↵erent
quantities. Unless E[µi(j)] is a�ne, there is no reason to
expect results from otherwise identical tests with di↵erent
treatment probabilities to coincide, even ignoring sampling
error. We denote E[µi(X+1)�µi(X)], the probability limit

of the cookie-based estimate bC, as C(p), to make dependence
on p explicit. We recall a definition and a result on stochas-
tic orderings of random variables, and prove that if E[µi(j)]
is concave (convex), then C(p) is decreasing (increasing) in
p.

Definition 1. For random variables X and X 0 with cu-
mulative distribution functions FX and FX0 , X is said to
first-order stochastically dominate X 0 if FX(c)  FX0(c) for
all c.

We write X �FOSD X 0 if X first-order stochastically
dominates X 0. The following classic result from [12] relates
first-order stochastic dominance to means.

Proposition 2. ([12]). X �FOSD X 0 if and only if
Eu(X) � Eu(X 0) for all increasing functions u.

This result allows us to derive the next proposition, which
shows how the cookie-level e↵ect varies with the cookie treat-
ment probability.

Proposition 3. If E[µi(j)] is concave (convex) in j, then
C(p) is decreasing (increasing) in p.

Proof. If X ⇠ B(n, p) and X 0 ⇠ B(n, p0) with p � p0,
then X �FOSD X 0 ([19]). Set u(j) = E[µi(j+1)]�E[µi(j)].
If E[µi(j)] is concave is in j, then u(·) is decreasing. Propo-
sition 2 implies that if X �FOSD X 0 and u(·) is decreas-
ing, then E[u(X)]  E[u(X 0)]. It follows that E[u(X)] 
E[u(X 0)], i.e. that C(p) is decreasing in p. The argument
for convex E[µi(j)] is analogous.

The e↵ect of interest to the experimenter is typically the
expected di↵erence in outcomes when all cookies are treated
and when no cookies are treated: E[µi(n) � µi(0)]. The
reason this e↵ect is important is that it is the causal e↵ect
of fully rolling-out the treatment (i.e. the causal e↵ect of
treating everyone all of the time, relative to never treating
anyone), and the purpose of the experiment is often to decide
whether the treatment should be rolled-out to everyone. It
is also the e↵ect that would be estimated in a user-level
experiment: if people could be perfectly assigned to test and
control, the average outcome would be E[µi(n)] in the test
group and E[µi(0)] in the control group. This cookie-based
e↵ect C(p) underestimates E[µi(n) � µi(0)], if E[µi(j)] is
increasing.

Proposition 4. If E[µi(j)] is increasing, then for all p,
C(p)  E[µi(n)� µi(0)].

Proof.

C(p) =
n�1X

j=0

(n� 1)!
j!(n� j � 1)!

pj(1� p)n�j�1(E[µi(j + 1)]� E[µi(j)])


n�1X

j=0

(E[µi(j + 1)]� E[µi(j)])

= E[µi(n)� µi(0)].

By how much does the cookie-based estimator underesti-
mate the true e↵ect of interest? It follows from Corollary
1 that if E[µi(j)] is a�ne in j, then nC(p) is equal to the
full rollout e↵ect, E[µi(n)�µi(0)], so that the cookie-based
estimator is too small by a factor of n. If E[µi(j)] is not
a�ne in j, the underestimation may be more or less se-
vere, depending on the shape of the function E[µi(j)] as
well as the cookie treatment probability p. We show that if
the outcome response is quadratic and p = 0.5, then nC(p)
equals E[µi(n) � µi(0)], just as in the a�ne case. More
generally, whether nC(p) overestimates or underestimates
E[µi(n) � µi(0)] depends not on whether outcomes them-
selves are concave or convex in the number of treatments
received, but whether the marginal e↵ect of an extra treat-
ment on outcomes is concave or convex in the number of
treatments received. Some further preliminaries on stochas-
tic dominance are required.

Definition 2. For random variables X and X 0 with cu-
mulative distribution functions FX and FX0 , X is said to
second-order stochastically dominate X 0 if

R c

�1[FX0(c) �
FX(c)]dt � 0 for all c.

We write X �SOSD X 0 if X second-order stochastically
dominates X 0. The next result, from [29], relates second-
order stochastic dominance to means of concave transfor-
mations.

Proposition 5. ([29]). For random variables X and X 0

with the same mean, X �SOSD X 0 if and only if Eu(X) �
Eu(X 0) for all bounded concave functions u.

This proposition allows us to derive some results about
the relative sizes of the cookie-based estimator and the true
user-level e↵ect.

Proposition 6. If p = 0.5 and the marginal e↵ects, E[µi(j+
1)]�E[µi(j)] are: i) concave in j, then nC(p) � E[µi(n)�
µi(0)]; ii) convex in j, then nC(p)  E[µi(n)� µi(0)].

Proof. i) Let X ⇠ B(n � 1, 0.5), let X 0 be uniformly
distributed on {0, . . . , n � 1}, and define u(j) = E[µi(j +
1)] � E[µi(j)]. The random variables X and X 0 have the
same mean. X 0 can be obtained from X by a sequence of
mean-preserving spreads, so X �SOSD X 0 (see [29]). By
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assumption, the function u is concave. We have

nC(p) = n(E[µi(X + 1)� µi(X)])

= nE[u(X)]

� nE[u(X 0)]

= n
n�1X

j=0

1
n
(E[µi(j + 1)]� E[µi(j)])

= E[µi(n)� µi(0)].

The first equality holds by the definition of C(p) and the sec-
ond by the definition of u(X). The inequality follows from
Proposition 5. The third equality follows by the definition
of X 0. Part ii) is analogous.

To see the logic behind this proposition, note that 1
n
E[µi(n)�

µi(0)] is the unweighted average of all the marginal e↵ects,
whereas C(p) is a weighted average of all the marginal ef-
fects, with relatively less weight on the extremes (that is,
less weight on E[µi(j+1)�µi(j)] for j close to 0 or n). The
e↵ect of shifting weight from the extreme to the intermedi-
ate marginal e↵ects depends on the concavity or convexity
of the sequence of marginal e↵ects.3

An implication of this result is that when the outcome re-
sponse is roughly quadratic, so that the marginal e↵ects are
roughly linear, the cookie treatment probability p should,
if possible, be set to 0.5. This allows the true e↵ect of
fully rolling out the treatment to be captured by scaling
the cookie-level treatment e↵ect estimator by the number of
cookies per person, while lower or higher p’s could lead to
potentially misleading estimates of the e↵ect.

4. DATA AND EXPERIMENTAL SIMULA-
TIONS

Proposition 4 shows that treatment-control di↵erences are
smaller on average in cookie-level experiments than people-
level experiments. This raises two concerns. First, if cookie-
based test estimates are incorrectly interpreted as reliable
estimates of the true e↵ect of rolling out a treatment, some
treatments that are in fact worthwhile may not be imple-
mented. Even when the attenuation bias in cookie-based es-
timates is understood, the uncertainty over the sizes of the
true e↵ects will hinder decision-making. Second, statistical
power will likely su↵er. A non-zero treatment e↵ect may be
less likely to be detected in a cookie-level experiment than
a people-level experiment. The extent to which these issues
are problems in practice depends on the distribution of the
number of cookies per person. In the special case where each
person is assigned a single cookie, for example, cookie and
people-based tests are identical.

Obtaining data on the empirical distribution of cookies
per person is generally di�cult. It requires being able to
match people to their cookies, and if this were straightfor-
ward there would be no need for cookie-based tests in the
first place. Facebook’s Atlas o↵ering allows advertisers to
3Another classic result on stochastic dominance closely re-
lated to Proposition 5 is that X �SOSD X 0 if and only if
E[u(X)] � E[u(X 0)] for all nondecreasing and bounded con-
cave functions u (see [12]). In a manner analogous to Propo-
sition 6, this implies that if p > 0.5 and the marginal e↵ects
are nondecreasing and concave, then nC(p) � E[µi(n) �
µi(0)]. Similarly if p > 0.5 and the marginal e↵ects are
nonincreasing and convex, then nC(p)  E[µi(n)� µi(0)].

serve ads on third-party websites and mobile applications.
Atlas can group together the cookies associated with a Face-
book user using a hashed Facebook id, when the user signs
into their Facebook account. We thus observe both cookie
assignments at the user-level for a group of users exposed
to Atlas advertising campaigns. This gives us the ability
to match cookies to people, across desktop and mobile de-
vices, or di↵erent browsers, or over time, and calculate the
distribution of cookies per person. This matching will be
imperfect, as some users may never sign into Facebook on
some of their devices. To the extent that we are underesti-
mating the true number of cookies per person for this reason,
the treatment dilution e↵ects in our simulations are likely to
understate the true e↵ects.

The number of cookies per person observed in Atlas data
over a one-month period (July 2015) is depicted in Figure 2.
Slightly over half of people are observed to have more than
one cookie during this period and over 10% are associated
with over 10 cookies. In our simulations and throughout
what follows, we deal with outliers by winzorising the data
at 11 cookies, so that people who have over 11 cookies are
treated as having exactly 11 cookies.4

Figure 2: Cookies Per Person, Histogram
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Even more directly related to treatment dilution e↵ects is
Figure 3, which shows the fraction of cookies belonging to
people with at least a given number of cookies. The chief
reason for treatment dilution is that cookies belonging to
people with many cookies are relatively unhelpful in detect-
ing an e↵ect of the treatment, as those people have likely
been exposed quite evenly to both treatment and control,
and their treatment and control cookies are unlikely to be
very di↵erent. In the limit, these peoples’ cookies do noth-
ing but add noise to the treatment and control comparison,

4This is conservative in the sense that it will tend to under-
state the true treatment dilution and loss of power associ-
ated with cookie-based testing.
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and make it harder to detect a treatment e↵ect. Figure 3
shows that these low-value cookies are frequent: about half
of cookies come from people who have eight or more cookies.
The single-cookie people, despite making up close to half of
the population, only contribute about 15% of the cookies.

Figure 3: Fraction of Cookies Belonging To People
With At Least n Cookies
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Advertising e↵ectiveness studies are a natural context for
studying the di↵erence between cookie and people-level ex-
periments. They are particularly common uses of cookie-
based testing [26, 27, 25], and also prone to lacking statis-
tical power [24]. We use data from Facebook’s Conversion
Lift product which allows advertisers to run ad e↵ective-
ness experiments by designating a random subset of users
to be in the hold-out or control group, and who will not see
the ads. By comparing outcome data between the test and
control group, advertisers can estimate the e↵ectiveness of
the advertisement in driving conversions. Advertisers will
specify objectives for their campaign which typically are ei-
ther continuous outcomes (e.g., total online sales) or binary
outcomes (e.g., sign-ups, application installs).

For each Conversion Lift campaign we observe assignment
to test or control for each user id, determining eligibility to
see the campaign, and online outcomes generated on the
advertiser side. These outcomes occur on the advertisers’
website (e.g., purchasing a product from their online store)
and the advertiser installs a conversion pixel that fires when
the user takes the appropriate action, sending the outcome
data back to Facebook to be matched back to the user’s
treatment status. Using the aggregate distributions from
each dataset—user ids and cookie assignments from Atlas,
and outcomes for test and control users from Conversion Lift
studies—we can simulate the e↵ect of running an advertising
e↵ectiveness experiment at both the cookie and person level.

We select two campaigns from the Conversion Lift pro-
gram for our simulations. The first is aimed at generating
user sign-ups for a online product, and the objective of the

second is to increase online sales. This allows us to assess
how cookie-based tests perform, for both Bernoulli and con-
tinuous outcome distributions (sign-ups and spending). In
both campaigns the test and control groups are significantly
di↵erent, albeit to quite di↵erent extents (with t-statistics
of 5.47 in the sign-up campaign and 2.20 in the user cam-
paign), making them good candidates for studying how sta-
tistically detectable e↵ects are attenuated in cookie-based
experiments.

For the cookie-level test simulation, we simulate the out-
comes ofm people, each of which has a total number of cook-
ies n drawn independently across people from the empirical
distribution depicted in Figure 2. Each cookie is indepen-
dently assigned to the treatment group with probability 0.5.5

The person-level outcomes of interest are independent across
people, and denoted by the random variable Yj,n, where j is
the number of treatment cookies a person is exposed to, and
n is his total number of cookies.6 This person-level outcome
is assigned uniformly at random to one of that person’s n
cookies.7

The random variables Yj,n are determined by the actual
advertising e↵ectiveness data. In both the user sign-up and
spending simulations, the random variable Yj,n is defined
as a mixture distribution: with probability j/n we draw
from the empirical distribution of the corresponding test
outcomes, and otherwise we draw from the empirical dis-
tribution of control outcomes. Thus the more “treated” a
user is, the more likely he is to have an outcome drawn from
the test distribution.

In our other simulations the linearity of the treatment ef-
fect, corresponding here to the mixture probability j/n be-
ing linear in j, appears not to be a critical determinant of the
magnitude of treatment dilution or statistical power. This is
unsurprising—by Proposition 1, treatment response curves
with very di↵erent degrees of curvature will generate simi-
lar cookie-level treatment e↵ects, as long as their weighted
marginal e↵ects are similar.

The person-level simulation is identical, except each per-
son will either have all of his cookies treated or all of his
cookies untreated, with each outcome being equally likely.
Treated people will draw outcomes from the treatment dis-
tribution with certainty, and otherwise will draw outcomes
from the control distribution with certainty.

This simulation procedure allows us to describe quantita-
tively the treatment dilution from cookie-based tests. Given
the empirical distribution of cookies per person, the e↵ect
estimated in a cookie-based test is 30.4% of the people-based
test e↵ect for both the user sign-up advertising campaign,
and the spending advertising campaign. This ratio depends
only on the distribution of the number of cookies per person
and not on the outcome distributions, as the ratio of the
marginal e↵ect of treating an extra cookie to the e↵ect of

5In practice most advertisers use an unbalanced treatment
assignment of 0.95, giving less power in both cookie and
people-level tests.
6In terms of the model of Section 2, for person i, Yi,j,n is the
sum of the per-cookie outcomes: Yi,j,n =

Pn
k=1 Ti,kyi,k,j .

7The assumption that a single cookie is assigned the entire
person-level outcome is a reasonable approximation in our
data. In the sign-up experiment, it necessarily holds, as
users cannot create duplicate accounts. In the spending ex-
periment, the total number of transactions is just 4% higher
than the total number of buyers, implying that relatively few
buyers are transacting multiple times on di↵erent cookies.
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treating all cookies is the same for both outcome distribu-
tions in this simulation.8 Treatments that appear to give a
positive return on investment on the basis of a cookie-based
test can in fact be substantially more beneficial than the
cookie test suggests.

To calculate statistical power, we repeatedly conduct the
simulations described above and for each simulation calcu-
late the t-statistic associated with the null hypothesis of no
di↵erence in means between test and control outcomes, us-
ing the standard form of the t-test for groups with unequal
variances. We reject at a 5% one-sided level. We draw
outcomes for all people 10,000 times, producing 10,000 t-
statistics. The test’s power is calculated as the fraction of
simulations for which the t-statistic lies in the rejection re-
gion (i.e. above 1.64).9

Figure 4: Power And Number of Cookies Per Person

●

●

●

●

●

●
●

●
● ●

● ● ● ● ● ● ● ● ● ●

●

●

●

●
●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

C
onversion

Spending

1 2 3 4 5 6 7 8 9 10
Number of Cookies Per Person

Po
we

r Type of Test
●

●

cookie
people

Before using the Atlas cookie data, it is useful to quantify
exactly how much test precision is a↵ected by the number
of cookies per person. Figure 4 shows how statistical power
decreases as a function of the number of cookies per person,
with 250,000 people in the sign-up experiment and 2.5m

8We use m = 1 billion people to estimate mean spending for
the treated and untreated cookies and people.
9The t-statistics are slightly di↵erent in the people and
cookie cases, as the relevant number of observations to be
used in constructing the statistics should be either the num-
ber of people or number of cookies, as appropriate.

people in the spending experiment. With one cookie per
person, the people and cookie tests are equivalent. Power
in the cookie tests declines sharply as the number of cookies
per person increases, while it remains constant in the people
tests. With two cookies, cookie-based test power drops by
41% in the sign-up experiment and 59% in the spending
experiment. With five or more cookies per person, cookie-
based tests are so underpowered as to be of rather limited
value.

Next, we incorporate the data on the actual distribution
of cookies per user. Figure 5 shows how the power of cookie-
and people-based test compare for di↵erent sample sizes, and
for the two outcome distributions. Both tests are consistent,
in that the null hypothesis will be rejected with probability
approaching one as sample sizes increase. However for a
fixed sample size, cookie-based tests are considerably less
powerful than people-based tests. With 2.5 million people
in the spending experiment, for example, the null hypothesis
will be correctly rejected in 65% of people-level experiments,
but only 36% of cookie-level experiments. With 125,000
people in the sign-up experiment, the corresponding figures
are 82% and 49%.

Figure 5: Power And Sample Size
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Figure 6 gives a di↵erent perspective on statistical power.
It shows the factor by which the number of people in a
cookie-level test must exceed the number of people in a
people-level test, to achieve the same power. Equivalently,
the figure describes how much larger sample sizes must be
to make up for the precision lost in cookie testing. These
relative sample sizes are shown as a function of sample size
in the people-level test. Overall, cookie tests need to have
2 to 3 times as many people as people tests to achieve the
same precision.10

Figure 6: Relative Sample Sizes Required, Cookies
vs. People
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One implication of Figure 6 is that the data on the 51% of
people with more than one cookie, and the 85% of cookies
they contribute, are of negative value in these simulations.
Under the assumptions of the simulation, where treatment

10We compute cookie-level power as a function of sample
size, as required for this calculation, by linearly interpolat-
ing through the points in Figure 5. For sample sizes beyond
about 400,000 people in the sign-up simulation, the numeri-
cal imprecision of this interpolation becomes more substan-
tial as statistical power asymptotes to 1.

e↵ects do not vary by the total number of cookies a person
is assigned, the experimenter would be better o↵ having no
data at all on these people. In a 200,000 person cookie-level
test, about 100,000 people have a single cookie. If it were
possible to restrict attention just to this group’s data, this
would be a people-level test with 100,000 people. From the
results of Figure 6, this is equal in power to a cookie-level
test with over 200,000 people, and so more powerful than
the initial sample size of 200,000.

5. CONCLUSION
Our theory and simulations calibrated with actual adver-

tising e↵ectiveness and cookie data suggest that imperfect
treatment assignment can substantially reduce the di↵er-
ences in average outcomes between test and control groups,
and may present a serious obstacle to learning about the true
underlying treatment e↵ects in online experiments. Cookie-
based testing is likely to introduce a status-quo bias into
decision-making, both because it reduces the probability of
finding significant e↵ects, and because it attentuates the es-
timated benefits of the treatment being tested.

Although the level of randomization is often out of the
experimenter’s control, in the context of advertising e↵ec-
tiveness studies, some platforms report e↵ectiveness at the
user level instead of the cookie level and advertisers should
keep this in mind when comparing results between plat-
forms. Given similar e↵ect sizes between platforms, more
budget must be allocated to cookie-level ad systems to find
statistically significant sales lifts.

Some extensions may provide further insight into the mag-
nitude of this problem. Interesting directions for future work
include relaxing the assumption of independence of treat-
ment and spending per cookie conditional on the number of
treated cookies; allowing for the number of cookies a user
generates to be a↵ected by previous cookies’ treatment sta-
tus; richer treatment e↵ect frameworks, which nest both the
case we consider and the case in which there are no spillovers
between cookies; and allowing heterogeneity in treatment ef-
fects across the number of total cookies.
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