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The bidder exclusion effect

Dominic Coey∗
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and

Kane Sweeney∗∗∗

We introduce a new, simple-to-compute test of independence of valuations and the number of
bidders for ascending button auctions with symmetric, conditionally independent private values.
The test involves estimating the expected revenue drop from excluding a bidder at random, which
can be computed as a scaled sample average of a difference of order statistics. This object
also provides a bound on counterfactual revenue changes from optimal reserve pricing or bidder
mergers. We illustrate the approach using data from timber auctions, where we find some evidence
that bidder valuations and the number of participants are not independent.

1. Introduction

� A number of recent innovations in empirical methodologies for auctions rely on the assump-
tion that bidders’ valuations are independent of the number of bidders participating in the auction.
In these articles, it is assumed that when one additional bidder arrives at an auction that originally
had n bidders, this additional bidder’s valuation represents a random draw from the same data
generating process that led to the original n bidders’ valuations. In this article, we demonstrate
that this assumption is easily testable in no-reserve ascending (button) auctions with symmetric,
conditionally independent, private values where bidders play the weakly dominant strategy of
truthful bidding.1 The data requirements are that the researcher observe two order statistics of
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1 Throughout the article, we will adopt the phrase conditionally independent private values, as used in Li, Perrigne,
and Vuong (2003), refering to a setting where bidders have private valuations that are correlated and where there exists a
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bids and the number of participants. We also demonstrate a number of extensions to this test,
including bounding counterfactual revenue under optimal reserve pricing or bidder mergers. We
demonstrate that our environmental assumptions can be relaxed in a number of ways.

Throughout the article, we refer to the decrease in expected auction revenue when a random
bidder is excluded from the auction as the bidder exclusion effect. In an ascending button auction
with private values, this effect can easily be computed without the need to estimate a complex
model, unlike many objects of interest in auction settings. In such an auction, with n bidders
participating, if a bidder is excluded at random from the auction, with probability n−2

n
he will be

one of the n − 2 lowest bidders, and so his exclusion will not affect revenue. With probability 2
n
,

he will be one of the two highest bidders, and revenue will drop from the second-highest to the
third-highest value of the n bidders. The bidder exclusion effect is therefore 2

n
times the expected

difference between the second- and third-highest values.
The bidder exclusion effect can yield several diagnostics for ascending auction settings. The

first and foremost is that of testing the independence of bidder valuations and the number of
bidders. By comparing the bidder exclusion effect in an n bidder auction to the actual decrease
in revenue between n bidder and n − 1 bidder auctions observed in the data, the researcher can
test whether bidder valuations are indeed independent of the number of bidders. We demonstrate
how this test can be performed in practice. The order statistic relationship we exploit here has
been used elsewhere by maintaining the assumption that bidder valuations are independent of the
number of bidders and instead testing for private versus common values (Athey and Haile, 2002).

Second, the bidder exclusion effect serves as a bound on the revenue gain to a seller from
choosing the optimal reserve price, thus aiding the practitioner in deciding whether or not to adopt
a reserve price at all. To do so, we rely on the result of Bulow and Klemperer (1996), that adding
an additional random bidder does more to improve seller revenue than does an optimal reserve
price. Third, the bidder exclusion effect can be used to bound the revenue losses to a seller from
counterfactual mergers between bidders.

We evaluate the bidder exclusion effect in US timber auction data. In this setting, we first
ask the following question: should the seller—in this case, the government—bother to compute
an optimal reserve price? Computing an optimal reserve price can be computationally costly
in practice, and mistakenly implementing too high a reserve price can be very detrimental to
revenue. The bidder exclusion effect can provide the seller a simple tool for evaluating the size
of the potential gains from optimal reserve pricing. We find that an upper bound on this gain is
13% of revenue on average in our data.

We then ask the question, if the seller does wish to compute an optimal reserve price, can
she safely rely on exogenous variation in the number of bidders in doing so? Existing methods for
computing bounds on the optimal reserve price itself rely on the assumption that bidder valuations
are independent of the number of bidders in order to obtain tight, meaningful bounds (e.g., Haile
and Tamer, 2003; Aradillas-López, Gandhi, and Quint, 2013; and Coey et al., 2017). We apply our
test to our data and find evidence against the assumption that bidder valuations are independent
of the number of bidders. However, after controlling for bidder asymmetries, this evidence is less
strong.

We highlight a number of extensions of the auction environments in which the bidder ex-
clusion effect can be used. For example, we demonstrate that it can be computed in ascending
button auctions with symmetric common values (i.e., when bidders have symmetric values and
symmetric bidding strategies) or in ascending nonbutton auctions when bidders have private
values but may potentially drop out below their values (such as in the setting of Haile and
Tamer, 2003). We also discuss extensions of these diagnostics to data from ascending auctions

random variable U , unknown to bidders and to the econometrician, such that, conditional on U , bidders’ valuations are
independent. In the setting we focus on in the main body of the article—that of ascending button auctions—all of results
also apply if this random variable U is known to the bidders, but still unobserved to the econometrician; such a setting is
referred to in the literature as a setting of independent private values with unobserved heterogeneity. The distinction is
inconsequential for our main results, but it is important for first-price auctions, which we discuss in Appendix B.
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with potentially binding reserve prices and to first-price auctions. For clarity of exposition—and
because it is the most general case in which all of our results immediately apply—we focus
the majority of the article on the case of no-reserve ascending button auctions with symmet-
ric, conditionally independent, private values. Section 2 discusses related literature. Section 3
introduces our primary modeling framework. We then discuss the use of the bidder exclussion
effect for testing in Section 4 and for informing counterfactuals in Section 5. Section 6 contains
our application to timber auctions and Section 7 discusses a number of extensions. Section 8
concludes.

2. Related literature

� The use of the bidder exclusion effect to test the assumption that bidder values are indepen-
dent of the number of bidders is related to several studies that rely on this type of independence
for identification or for testing other aspects of auction models. Athey and Haile (2002, 2007)
refer to this type of independence as “exogenous participation,” and provide a one-sided test, re-
lated to ours, for testing private versus common values, maintaining the assumption of exogenous
participation. Aradillas-López, Gandhi, and Quint (2013) and Coey et al. (2017) refer to this type
of independence as “valuations are independent of N ,” and they, along with earlier work by Haile
and Tamer (2003), exploit this assumption to obtain tight bounds on counterfactual seller revenue
and optimal reserve prices. Aradillas-López, Gandhi, and Quint (2016) provide an alternative test
of the dependence between valuations and the number of bidders that has the advantage of only
requiring that the transaction price be observed (as opposed to two order statistics of bids, as we
require) but has the disadvantage of being more complex to compute than our test. Liu and Luo
(2017) provide a test for such independence in first-price auctions. Aradillas-López, Gandhi, and
Quint (2013) and Aradillas-López, Gandhi, and Quint (2016) also demonstrate general condi-
tions under which popular entry models, including those of Samuelson (1985), Levin and Smith
(1994), and Marmer, Shneyerov, and Xu (2013), will generate the type of dependence between
valuations and the number of bidders that our test can detect.

The question of how much a seller would benefit by adopting an optimal reserve price—a
quantity which the bidder exclusion effect can be used to bound—has been a counterfactual of
interest for a number of empirical auction studies, such as Paarsch (1997), Li and Perrigne (2003),
Li, Perrigne, and Vuong (2003), Haile and Tamer (2003), Krasnokutskaya (2011), Tang (2011),
Li and Zheng (2012), Aradillas-López, Gandhi, and Quint (2013), Roberts and Sweeting (2013,
2016), Bhattacharya, Roberts, and Sweeting (2014), and Coey et al. (2017, 2018). A typical
empirical approach to answering this question would rely on assumptions about the distribution
of values and the information environment to estimate a detailed model, determine optimal
reserve prices using the first-order condition for seller profit, and finally measure the revenue
difference between the optimally designed auction and a no-reserve auction. An advantage of
such an involved procedure, relative to ours, is that it could yield an estimate of the optimal
reserve price itself, whereas our tool cannot. Our tool, however, circumvents the need for these
steps and yields information about the revenue gain from choosing the optimal reserve price.
The bidder exclusion effect, in bounding revenue, is therefore best thought of as being useful
as a simple-to-compute initial diagnostic. Tang (2011) derives results for first- and second-price
auctions and is particularly related to our revenue-bounding approach in spirit in that it provides
a bound on counterfactual revenue without directly estimating valuations (as do Haile and Tamer,
2003; Aradillas-López, Gandhi, and Quint, 2013; Coey et al., 2017; and Chesher and Rosen,
2017, in ascending auctions).

Many identification and testing results for first- and second-price auctions cannot be ap-
plied to ascending auctions because of the complicating factor that in ascending auctions, the
would-be bid of the highest-value bidder will not be observed. For this reason, empirical tools for
ascending auction environments beyond independent private values settings have only recently
become available. These results include Aradillas-López, Gandhi, and Quint (2013) and Coey
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et al. (2017), which apply to ascending auctions with correlated private values, and Hernandez,
Quint, and Turansick (2018), Freyberger and Larsen (2017), and Chesher and Rosen (2017),
which apply to ascending auctions with separable unobserved heterogeneity. Our approach con-
tributes to this literature by providing identification arguments for ascending auctions in a par-
ticular type of correlated private values environments, that of conditionally independent private
values.

Bidder mergers have also been a focus of a number of studies in the empirical auctions
literature, including Froeb, Tschantz, and Crooke (1998), Waehrer (1999), Dalkir, Logan, and
Masson (2000), Brannman and Froeb (2000), Tschantz, Crooke, and Froeb (2000), Waehrer
and Perry (2003), Froeb, Shor, and Tschantz (2008), and Li and Zhang (2015). Our approach
provides an initial diagnostic tool for such settings, allowing the researcher a quick-and-easy way
to compute bounds on the effect of a counterfactual bidder merger on seller revenue.

In the spirit of Haile and Tamer (2003) and other bounds approaches that have followed
(Tang, 2011; Armstrong, 2013; Komarova, 2013; Aradillas-López, Gandhi, and Quint, 2013;
Gentry and Li, 2013; Coey et al., 2017; Chesher and Rosen, 2017; and others), our empirical
approach does not seek to point identify and estimate the distribution of bidder values. Instead,
we draw inferences from functions of the value distribution that are point, or partially, identified.
More broadly, our approach ties in closely to the recent literature on “sufficient statistics” for
welfare analysis (Chetty, 2009; Einav, Finkelstein, and Cullen, 2010; Jaffe and Weyl, 2013),
which focuses on obtaining robust welfare or optimality implications from simple empirical
objects without estimating detailed models.

3. Model framework

� We consider single-unit ascending button auctions with risk-neutral bidders and a risk-
neutral seller, and we assume the auctions analyzed take place without a reserve price. We
assume bidders have symmetric, conditionally independent, private values (CIPV). The equi-
librium concept we consider throughout the main body of the article is equilibrium in weakly
dominant strategies. Specifically, given that in a private values ascending button auction it is
weakly dominant for bidders to bid their values, we assume that bidders do so.

Let N be a random variable denoting the number of auction participants and let n represent
realizations of N . Let Vi denote bidder i’s value and Bi his bid. For the subset of auctions that
have exactly n bidders enter, let Fn denote the joint distribution of V ≡ (Vi )i=1,...,n . Let f n denote
the joint density. By bidder symmetry, we refer to the case where Fn is exchangeable with respect
to bidder indices.

The term conditionally independent is used to mean that bidders’ values may be correlated
in any given auction but that there exists some random variable U (unknown to bidders) such
that bidders’ values are independent conditional on U (Li, Perrigne, and Vuong, 2000). Our main
results also apply to settings of unobserved auction-level heterogeneity as well as some other
settings of correlated private values. Unobserved auction-level heterogeneity refers to settings
where the random variable U is observed by the bidders but not by the econometrician, and
the realization of U in a given auction affects all bidders’ valuations symmetrically. In the
auctions literature, unobserved heterogeneity is frequently modelled as shifting valuations in an
additively or multiplicatively separable fashion. All the results we derive in this article allow for
nonseparable unobserved auction-level heterogeneity, assuming that the remaining, noncommon
component of bidder valuations is independent conditional on the realization of the unobserved
auction-level heterogeneity.

Let V 1:n, . . . , V n:n represent the bidders’ valuations ordered from smallest to largest. Simi-
larly, let the random variables B1:n, . . . , Bn:n represent their bids ordered from smallest to largest.
We will refer to Bn−1:n and Bn−2:n as the second- and third-highest bids (and thus, the phrase
highest bid will refer to the drop out price of the highest-value bidder, which will not be observed
in ascending auctions). We assume the researcher observes realizations of Bn−1:n , Bn−2:n , and N
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from a sample of i.i.d. auctions.2 This data requirement may not be satisfied in many ascending
auction settings, such as cases in which some bidding activity is not recorded by the auctioneer.

For k ≤ m ≤ n, let Bk:m,n represent the kth smallest bid in m bidder auctions, where the
m bidders are selected uniformly at random from the n bidders in auctions that had exactly n
bidders enter. Some remarks on this quantity are in order. We stress that this is a counterfactual if
m < n: we assume that it is common knowledge among the remaining m bidders that n − m of
the original n bidders have been dropped, and that they are competing in an m bidder auction, not
an n bidder auction. The distribution of Bk:m,m and Bk:m,n for m < n may be different, as different
kinds of goods may attract different numbers of entrants, and bidders may value goods sold in
auctions with m entrants differently from those sold in auctions with n entrants. Finally, Bk:m,m

and Bk:m are the same random variable.
Our empirical strategy centers around three key variables. The first is the bidder exclusion

effect. We define the bidder exclusion effect in n bidder auctions with no reserve price, �(n), as
the expected fall in revenue produced by randomly excluding a bidder from those auctions. In
ascending auctions, the bidder exclusion effect is:

�(n) ≡ E(Bn−1:n) − E(Bn−2:n−1,n),

that is, the expected second-highest bid in n bidder auctions, minus the expected second-highest
bid in n − 1 bidder auctions, where those n − 1 bidder auctions are obtained by publicly dropping
a bidder at random from n bidder auctions.

The second variable, �bid(n), is the expected fall in revenue from dropping a bid (rather than
a bidder) at random, assuming all other bids remain unchanged:

�bid(n) ≡ 2

n
E(Bn−1:n − Bn−2:n).

With probability 2
n
, one of the highest two bids will be dropped, and revenue will drop to the

third-highest bid of the original sample, and with probability n−2
n

, one of the lowest n − 2 bids
will be dropped, and revenue will not change. An advantage of focusing on a private values setting
in which bidders bid their values is that �(n) = �bid(n). This is not necessarily the case in other
environments discussed in the extensions in Section 7, such as a common values auction.

The third variable of interest, �obs(n), is the observed difference in expected revenue between
those auctions in which n bidders choose to enter, and those in which n − 1 choose to enter3:

�obs(n) ≡ E(Bn−1:n) − E(Bn−2:n−1).

Unlike �(n), the quantities �bid(n) and �obs(n) are not counterfactual and can always be
estimated as sample means using data on the two highest bids and the number of auction entrants.
If the researcher observes a vector of auction-level characteristics, X , the researcher can estimate
these objects conditional on X , estimating the sample analog of

�bid(n|X ) ≡ 2

n
E(Bn−1:n − Bn−2:n|X ) (1)

�obs(n|X ) ≡ E(Bn−1:n|X ) − E(Bn−2:n−1|X ). (2)

Each of these objects can be computed using standard parametric or nonparametric approaches
for estimating conditional means. Below, we will describe how these objects can be used for
certain testing and counterfactual exercises.

2 This i.i.d. assumption refers to the relationship between auction observations in the data, not the relationship
among valuations within a given auction. This assumption means that our framework does not apply to settings such as
Backus and Lewis (2016), Hendricks and Sorensen (2018), and Coey, Larsen, and Platt (2016), where there exist dynamic
linkages across auctions affecting bidders’ willingness-to-pay in a given auction.

3 We use the term “observed” simply to help distinguish �bid (n) from �obs(n); the term is not meant to imply that
�obs(n) does not need to be estimated.
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4. Testing if valuations are independent of N

� In this section, we describe our test for the independence of valuations and the number of
bidders. The intuition behind this test is as follows. If bidders’ valuations do not vary systemat-
ically with the number of auction participants, then n − 1 bidder auctions are just like n bidder
auctions with one bidder removed at random. If the estimated bidder exclusion effect (the effect
of randomly removing a bidder) is significantly different from the observed change in revenue
between n and n − 1 bidder auctions, this is evidence against independence of valuations and the
number of entrants.

Let Fn
m denote the distribution of values of a random subset of m bidders, in auctions that

actually had n participating bidders, where the m ≤ n bidders are drawn uniformly at random
from the n bidders. Following Aradillas-López, Gandhi, and Quint (2013), we say that valuations
are independent of N if Fn

m = Fn′
m for any m ≤ n, n′. Thus, if valuations are independent of N ,

we have Fn
n−1 = Fn−1

n−1 , and it follows that E(Bn−2:n−1,n) = E(Bn−2:n−1,n−1) = E(Bn−2:n−1), and

�(n) ≡ E(Bn−1:n) − E(Bn−2:n−1,n)

= E(Bn−1:n) − E(Bn−2:n−1)

≡ �obs(n).

As described in Section 3, in our environment, �bid(n) = �(n). Thus, testing the assumption
that valuations are independent of the number of bidders involves comparing �bid(n) and �obs(n).
We define T (n) as

T (n) ≡ �obs(n) − �bid(n)

= (
E(Bn−1:n) − E(Bn−2:n−1)

) − 2

n
E(Bn−1:n − Bn−2:n)

= E

(
n − 2

n
Bn−1:n + 2

n
Bn−2:n

)
− E(Bn−2:n−1). (3)

The first term in the final expression is the expected revenue in n bidder auctions when one bidder
is dropped at random, and the second term is the expected revenue in n − 1 bidder auctions.
The relationship in (3) is related to other recurrence relationships for order statistics (David
and Nagaraja, 1970). Athey and Haile (2002) propose using this same relationship between order
statistics across samples of varying n as a test of private versus common values. There, the authors
maintain the assumption that valuations (and signals, in the common value case) are independent
of N . The authors demonstrate that T (n) < 0 in a common values setting and T (n) = 0 in a private
values setting; their test does not provide any interpretation for T (n) > 0 cases. In contrast, we
maintain the assumption of private values and exploit this order statistic relationship to test the
null hypothesis that valuations are independent of N . In our case, a statistically significant finding
of T (n) < 0 can be interpreted as evidence that valuations are higher, in a stochastic dominance
sense, in n bidder auctions than in n − 1 bidder auctions. Similarly, a finding of T (n) < 0 can
be interpreted as evidence that valuations are lower, in a stochastic dominance sense, in n bidder
auctions than in n − 1 bidder auctions. Throughout, we think of our test as a two-sided test, but in
some cases the researcher may wish to implement the test as a one-sided test when the researcher
is concerned about a particular sign of the dependence between valuations and the number of
bidders.

As our approach requires observation of two order statistics of bids, it applies only to
auctions with n > 2 bidders. Thus, the approach should not be used if the researcher is particularly
concerned about a dependence between valuations and the number of bidders in auctions with
only one or two bidders and has reason to believe that this dependence would not be detectable
in data from auctions with n > 2. Auction-level unobserved heterogeneity may differ in one-
or two-bidder auctions from n > 2 bidder auctions, for example. This does not pose a problem,
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however, as long as the test is interpreted correctly as providing information only directly for
auctions with n > 2 bidders.

We test the null hypothesis T (n) = 0 using a two-sample t-test.4 Let An represent the set of
auctions with n entrants and let bk:n

j represent the (k : n) order statistic of bids in auction j . The
test statistic, T̂ (n), for this null is the sample analog of equation (3),

T̂ (n) = 1

|An|
∑
j∈An

(
n − 2

n
bn−1:n

j + 2

n
bn−2:n

j

)
− 1

|An−1|
∑

j∈An−1

(bn−2:n−1
j ). (4)

To perform the two-sample t-test, the variance of the first object in parentheses can be computed
separately from the variance of the second object in parentheses, as the first comes from n bidder
auctions and the second from n − 1 bidder auctions. A simple regression-based form of this test
is as follows. Let yj = n−2

n
bn−1:n

j + 2
n
bn−2:n

j if j ∈ An and yj = bn−2:n−1
j if j ∈ An−1. Regress yj on a

constant and an indicator 1( j ∈ An). The coefficient on the indicator is T̂ (n). Heteroskedasticity-
robust standard errors for this regression would allow for the variance to differ in the n bidder
and n − 1 bidder auctions, as in the two-sample t-test.

If T̂ (n) is significantly different from 0, the test indicates the presence of dependence between
valuations and N . This test is consistent against all forms of dependence that affect expected
revenue (i.e., if �bid(n) �= �obs(n), then the test rejects with probability approaching 1 as the
number of auctions goes to infinity). Clearly, given that this test focuses only on expectations, it
would not detect all types of dependence between valuations and the number of bidders: it is a test
of a necessary condition of such independence, not a sufficient condition. This proposed test could
be extended, and made more powerful, by comparing the entire distribution of n−2

n
Bn−1:n + 2

n
Bn−2:n

to that of Bn−2:n−1, rather than only the means, but at a sacrifice of computational simplicity.
Appendix B shows Monte Carlo evidence on the power of this test relative to simply

comparing mean values in n − 1 and n bidder auctions in a model that allows for dependence
between valuations and N (this model nests the entry model of Levin and Smith, 1994). We find
that the bidder exclusion test is a reasonably powerful alternative to this mean comparison test,
given that it uses considerably less data. Moreover, the bidder exclusion test is implementable
with ascending auction data, whereas the mean comparison test is not.5

Testing is also possible if valuations are assumed independent of N conditional on a set of
observable auction characteristics X rather than unconditionally. The null hypothesis is T (n|X ) =
0, where T (n|X ) is defined as

T (n|X ) ≡ E

(
n − 2

n
Bn−1:n + 2

n
Bn−2:n | X

)
− E(Bn−2:n−1|X ). (5)

This hypothesis can be tested nonparametrically, without assuming any particular form for the
conditional means. Chetverikov (2018), Andrews and Shi (2013), and Chernozhukov, Lee, and
Rosen (2013) develop inference procedures that apply to this setting.

A simple parametric version of this test is as follows. For a fixed n, specify the bidding
equation for bidder i in auction j as

bnji = αn + β X j + εnji , (6)

4 Standard techniques, like a Wald test or a Bonferroni correction, can be used to test T (n) = 0 for all n in some
finite set. Note also that this test only uses information on the second- and third-highest bids. If more losing bids are
available and interpretable as the willingness-to-pay of lower-value bidders, this test could be made more powerful by
including information from these losing bids. Intuitively, one could compare the revenue drop that would occur if k out of
n + k bidders were dropped at random to the actual revenue difference between n and n + k bidder auctions. We address
this idea in Section 7.

5 The bidder exclusion test uses the second- and third-highest values in n bidder auctions and the second-highest
value in n − 1 bidder auctions, whereas the mean comparison test uses all n values in n bidder auctions and all n − 1
values in n − 1 bidder auctions. The mean comparison test cannot be implemented in ascending auctions because the
highest valuation is never observed.
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where X j is a vector of observable characteristics of auction j and εnji ⊥⊥ X j .6 Then,

n − 2

n
bn−1:n

j + 2

n
bn−2:n

j = a1 + β X j + e1 j , j ∈ An (7)

bn−2:n−1
j = a2 + β X j + e2 j , j ∈ An−1, (8)

where a1 = αn + E( n−2
n

εn−1:n
nj + 2

n
εn−2:n

nj ), a2 = αn−1 + E(εn−2:n−1
(n−1) j ), E(e1 j ) = E(e2 j ) = 0, and

e1 j , e2 j ⊥⊥ X j . After controlling for observables, a1 determines the expected second order statistic
(i.e., seller’s revenue) when a bidder is removed at random from n bidder auctions and a2 deter-
mines the expected second order statistic in n − 1 bidder auctions when the actual number of
bidders is indeed n − 1. Testing the null hypothesis of equation (5) amounts to testing the null of
a1 = a2.

We combine (7) and (8) as follows:

yj = a2 + (a1 − a2)1( j ∈ An) + β X j + e3 j , j ∈ An ∪ An−1, (9)

where if j ∈ An , then yj = n−2
n

bn−1:n
j + 2

n
bn−2:n

j and e3 j = e1 j , and if j ∈ An−1, then yj = bn−2:n−1
j

and e3 j = e2 j . This allows for a convenient regression-based test of the null hypothesis that
valuations are independent of N . When β = 0, this test nests the no-covariates regression-based
test described above.7 We emphasize again that this parametric version is not the only way to
implement our test; if desired, the test can also be implemented by allowing covariates X j to enter
in a more flexible parametric or nonparametric fashion.

5. Using the bidder exclusion effect to inform counterfactuals

� In this section, we demonstrate that the bidder exclusion effect can be used to compute
bounds on several counterfactual objects of interest for auction studies. First, we provide a bound
on the counterfactual improvement in revenue that a seller would receive by using an optimal
reserve price. Second, we provide an approach for bounding the drop in revenue to a seller when
bidders merge.

� Bounding the impact of optimal reserve prices. The celebrated theorem of Bulow and
Klemperer (1996) (Theorem 1) relates bidder entry to optimal auction design.8 The authors
demonstrate that an English auction with no reserve price and n + 1 bidders is more profitable
in expectation than any mechanism with n bidders.9 On these grounds, they suggest that sellers
may be better off trying to induce more entry than trying to implement a better mechanism. As
they acknowledge, this interpretation may be problematic if the new bidders are weaker than the
bidders who would have entered anyway (e.g., if increased marketing efforts induce lower-value
bidders to enter the auction). We propose an alternative interpretation of their theorem, namely,
that it can be used in empirical work to easily obtain upper bounds on the effect of improving
auction design.

To apply the Bulow-Klemperer result, we are required to make one additional assumption
imposed by Bulow and Klemperer (1996): that bidder valuations satisfy the monotonicity of

6 Athey, Levin, and Seira (2011) and Athey, Coey, and Levin (2013) also take the approach of specifying a parametric
model directly for bids, rather than the underlying values. Given our button auction setting, specifying a model for bidding
is equivalent to specifying a model for values.

7 As described above, heteroskedasticity-robust standard errors in this regression test would allow for the variance
of the unobserved term to differ in the n and n − 1 bidder auction samples.

8 Following Bulow and Klemperer (1996) and most of the auction theory literature, we use “optimal” to mean
optimal given a fixed set of participants. If entry is endogenous, then the mechanism’s design may affect the number of
participants. Optimal reserve prices for fixed and for endogenous entry may be different (McAfee and McMillan, 1987;
Levin and Smith, 1994).

9 The Bulow-Klemperer Theorem is frequently misunderstood as only applying to independent private values
settings, when in fact, it is stated for correlated private values settings as well as certain common values settings. We
discuss this further in Section 7.
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marginal revenue property.10 To define increasing marginal revenue, let (V1, . . . , Vn) denote the
private values of the n bidders in n bidder auctions, as above. The n + 1th bidder, were he to
enter, has a private value denoted Vn+1. We denote the marginal distribution of Vj by Fn

j , and the

corresponding density by f n
j . Define V ≡ (V1, . . . , Vn+1), and V = V−(n+1), that is, the values of

bidders other than bidder n + 1. Let Fn
j (Vj |V− j ) and f n

j (Vj |V− j ) represent the distribution and

density of bidder j’s value conditional on competitors’ values. Define M R j (V) and M R j (V) as

M R j (V) ≡ −1

f n
j (Vj |V− j )

d

dVj

(
V(1 − Fn

j (Vj |V− j ))
)

(10)

M R j (V) ≡ −1

f n
j (Vj |V− j )

d

dVj

(
V(1 − Fn

j (Vj |V− j ))
)
. (11)

We say bidders have “increasing marginal revenue” (as a function of their private values) if
Vj > Vi ⇒ M R j (V) > M Ri (V) and M R j (V) > M Ri (V).11 In the independent private values

case, this assumption simplifies to the function M R(Vj ) ≡ M R j (V) = M R j (V) = Vj − 1−Fn
j (Vj )

f n
j (Vj )

being increasing in Vj .
We also note that the Bulow-Klemperer result is about adding a bidder, whereas the effect

we can measure in the data is that of removing a bidder. We therefore prove the following result,
which is a special case of results established by Dughmi, Roughgarden, and Sundararajan (2012).
The specialization to our current single-item auction setting allows us to use only elementary
mathematics, in contrast to Dughmi, Roughgarden, and Sundararajan’s (2012) proof, which relies
on matroid theory. The proof is found in the Appendix.

Proposition 1. In ascending button auctions with no reserve price where bidders have symmetric,
conditionally independent, private values, if bidders’ marginal revenue is increasing in their
values, then the absolute value of the change in expected revenue is smaller when adding a
random bidder than when removing a random bidder.

Our main optimal revenue-bounding result then follows immediately:

Corollary 1. In ascending button auctions with no reserve price where bidders have symmetric,
conditionally independent, private values and increasing marginal revenue curves, then for all
n > 2, the increase in expected revenue from using the optimal reserve price is less than �bid(n).

Proof. The result follows immediately from combining the Bulow-Klemperer Theorem with
Proposition 1. �

We wish to emphasize that this result does not require independence between valuations and
the number of bidders (the condition that can be tested using the results in Section 4), because it
only relies on a given realization n of the number of bidders. We also note that the upper bound
in Proposition 1 is not necessarily sharp. Although the Bulow and Klemperer (1996) bound is

10 Note that Bulow and Klemperer (1996) also assume risk neutrality, which we assume throughout, and that the
seller’s valuation for the good is less than that of all buyers. If this latter assumption does not hold, the Bulow-Klemperer
result still applies, but the result would be modified to state that one additional bidder is better than an optimal reserve
price at increasing the seller’s expected payment from bidders rather than the seller’s revenue (where the latter includes
the seller’s valuation of keeping the good and the former does not).

11 Equivalently, bidders have decreasing marginal revenue, when marginal revenue is considered to be a function
of bidder “quantity” (i.e., (1 − Fn

j (Vj |V− j )) and (1 − Fn
j (Vj |V− j ))) rather than of their values. Note that Bulow and

Klemperer (1996) parameterize marginal revenue in terms of bidder “quantity” rather than their private values, so that
their marginal revenue function is decreasing. For more on the interpretation of bidders’ marginal revenue, see Bulow
and Roberts (1989).
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indeed sharp (i.e., there exists a limiting distribution of valuations for which adding a random
bidder increases revenue by the same amount as an optimal reserve price would),12 our bound
will not necessarily be sharp due to potential slack in the bound given in Proposition 1, that is,
due to the fact that we are considering the effect of removing a random bidder rather than that of
adding a random bidder.

Bounding the revenue gains from optimal reserve prices can serve two key purposes. The first
is to allow the practitioner to gauge whether or not to invest resources in determining/implementing
an optimal reserve price. This can be useful in particular given the large losses that can result
from charging too high a reserve price (see Kim, 2013; Ostrovsky and Schwarz, 2016; and Coey
et al., 2018). The second is to allow researchers to compare quantitatively the effects of other
interventions in auction environments to the benchmark of optimal reserve pricing. This concept
is illustrated in Lacetera et al. (2016), where it is shown that the effect of a one-standard-deviation
improvement in the ability of the human auctioneer at auto auctions raises revenue by $348 per
auction, whereas the upper bound on the benefit of optimal auction design as measured through
the bidder exclusion effect is $333. A similar comparison can be made to Tadelis and Zettelmeyer
(2015), where the authors measure that information disclosure at similar auto auctions increases
revenue by $643. Together, these results suggest that nontraditional instruments of auction design,
such as information disclosure or high-performing auctioneers, can matter more than reserve
prices for improving auction revenue—in spite of the primary focus in the existing literature on
reserve pricing and similar instruments as the means of improving auction revenue.13

� Bidder mergers. The concept behind the bidder exclusion effect can also be used to bound
above the expected fall in revenue resulting from a counterfactual bidder merger. We state our
results in terms of a merger between two of the n bidders, but the results easily extend to more
than two bidders merging. When bidders i and j merge, let Mk denote the willingness-to-pay
of bidder k �= i, j , and Mi, j denote the willingness-to-pay of the joint entity. Our results in this
subsection rely on the following assumption:

Assumption 1. When any two bidders i and j merge, Mk = Vk for all k �= i, j , and Mi, j ≥
max{Vi , Vj}.

Assumption 1 implies that mergers may result in increased production efficiencies and hence
an increased willingness-to-pay of the merged entity, but the merger will not decrease this entity’s
willingness-to-pay.14 Further intuition for this assumption comes from considering a procurement
(reverse auction) setting rather than an increasing-price auction, where the analogous assumption
would be that costs of merging bidders do not rise after the merger, but may decrease (due to
economies of scale or other cost efficiencies). This assumption—or the even stronger assumption
that Assumption 1 holds with equality—is satisfied in all previous auction merger studies of
which we are aware (see, e.g., Froeb, Tschantz, and Crooke, 1998; Waehrer, 1999; Dalkir, Logan,
and Masson, 2000; Brannman and Froeb, 2000; Tschantz, Crooke, and Froeb, 2000; Waehrer
and Perry, 2003; Froeb, Shor, and Tschantz, 2008; and Li and Zhang, 2015), but it certainly may

12 Consider, for example, a symmetric independent private values (IPV) button auction and consider a sequence of
distributions converging to F(v) = v/(1 + v). In the limit, the optimal revenue approaches the revenue with an additional
bidder arbitrarily closely. We thank Jason Hartline for pointing out this fact.

13 See Coey, Larsen, and Sweeney (2014), the earlier Working Paper version of this study, for further discussion
and results.

14 The intuition derived in this section to analyze counterfactual bidder mergers can also be extended to analyzing
the effects of counterfactual collusion among bidders. In the case of collusion, Assumption 1 is about two bidders
colluding, rather than merger. Assumption 1 is satisfied in all models of efficient collusion (e.g., Mailath and Zemsky,
1991; Krishna, 2009; and Marmer, Shneyerov, and Kaplan, 2016). Waehrer and Perry (2003) explain that the efficient-
collusion setting is equivalent to a bidder merger with no cost synergies. In some models of inefficient collusion, the
assumption is also satisfied (e.g., Graham, Marshall, and Richard, 1990; and Asker, 2010), although in some it is not (e.g.,
von Ungern-Sternberg, 1988; and Pesendorfer, 2000, in which side payments are not allowed).
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not hold in all merger settings (e.g., if the merger changes the willingness to participate of the
nonmerging entities), and its appropriateness should be evaluated on a case-by-case basis.15

It is important to note that Assumption 1 does not imply that the joint entity will necessarily
end up paying more than max{Vi , Vj}; this will only occur in cases where the joint entity wins
post-merger but would not have won (i.e., neither of two bidders merging would have won) in the
absence of the merger. The actual price paid by the joint entity, when it wins, will be determined
by the second-highest willingness-to-pay.

Under Assumption 1, we obtain the following result:

Proposition 2. In ascending button auctions with no reserve price where bidders have symmetric,
conditionally independent, private values and where Assumption 1 holds, then, for all n > 2, the
decrease in expected revenue from two bidders merging is bounded above (i) by 1

n−1
�bid(n) when

the two bidders are randomly selected and (ii) by E(Bn−1:n − Bn−2:n) when the two bidders are
not randomly selected.

Proposition 2 distinguishes between the case where the merging bidders are randomly
selected versus nonrandomly selected. The term randomly selected here means that each bidder
in the merger does not know the other bidder’s realized draw from the valuation distribution prior
to deciding to merge. Randomly selecting the merging pair is equivalent to randomly selecting a
pair of bidders, dropping the bidder with the lower value in the pair (and hence, the highest-value
bidder would never be dropped in this process), and then weakly raising the willingness-to-pay
of the remaining bidders. As shown in the proof of Proposition 1, this process will only lead to
a decrease in revenue when the lower-value bidder in the selected pair is the bidder whose value
corresponds to V n−1:n (or, equivalently, the merger only leads to a revenue decrease when the
pair contains the two highest-value bidders; a similar point is discussed in Froeb, Tschantz, and
Crooke, 1998), which occurs with probability 1

(n
2)

= 2
n(n−1)

.16 Thus, the upper bound in part (i) of

Proposition 2 is smaller than �bid(n), by a factor of 1
n−1

. The upper bounds in Proposition 2 are
sharp; the bounds in (i) and (ii) can hold with equality when the inequalities in Assumption 1
bind.

In practice, it may be the case that bidders are not randomly matched to merge, and in these
cases the wider bound in part (ii) can be useful, bounding the seller’s loss using the unscaled
expected gap between the second and third order statistics of bids. For example, in many settings,
it may be two high-value competitors who choose to merge. The tighter bound in (i) will only
be an upper bound on the seller’s loss if the merged entity is more likely to include low-value
bidders than would a randomly formed merged entity. This might be the case, for example, if the
merger is motivated by a bidder acquiring a smaller competitor.

These approaches to analyzing mergers in auctions relate to recent discussion in competition
policy. Prior to the 2010 revision of the US Merger Guidelines, the Federal Trade Commission
(FTC) and Department of Justice (DOJ) published a variety of questions for comment, one of
which addressed how exactly unilateral effects should be evaluated in markets with auctions or
negotiations (FTC, 2009). In response to these questions, Moresi (2009) hints at a similar idea to
what we propose: one can examine the second- and third-lowest bids in a procurement auction
(analogous to the second- and third-highest in our ascending auction setting) to understand the
pricing pressure created by bidders choosing to merge. These ideas also relate to FTC and DOJ
analysis of mergers using auctions to model a market even when that market is not explicitly

15 There are certainly other plausible alternatives to Assumption 1. For example, rather than adopting the highest
valuation of the merging bidders, the merged entity might instead adopt the higher of the two values with some probability
α and the lower of the two values with probability 1 − α. Here, we maintain Assumption 1 throughout.

16 The proof also demonstrates that an even stronger result than that in Proposition 2 holds: the bounds hold in any
given auction as well, not only in expectation. However, we state the proposition in terms of expectations for consistency
of the exposition.
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centrally run as an auction. Baker (1997) and Froeb, Tschantz, and Crooke (1998) highlight
examples of such uses by antitrust and competition authorities to quantify price effects in mergers
of pharmacies, hospitals, mining equipment companies, and defense contractors; Dalkir, Logan,
and Masson (2000) provides an example in health insurance markets.

6. Application: US timber auctions

� Our empirical application uses US government timber auction data to illustrate how the
bidder exclusion effect can be used to test for dependence between valuations and the number
of bidders. The Forest Service’s timber auction data has been used extensively in the empirical
auctions literature, and is a natural context to demonstrate the applications of the bidder exclusion
effect. After a brief description of the data, we address the question of whether the seller (in this
case, the government), should bother investing the effort required to compute an optimal reserve
price. We do so by using the bidder exclusion effect to bound the gains to the seller from optimal
reserve pricing. We then ask the question, if the seller does wish to compute an optimal reserve
price—or bounds on the optimal reserve price, using approaches such as Haile and Tamer (2003),
Aradillas-López, Gandhi, and Quint (2013), or Coey et al. (2017)—can she, in doing so, safely
assume that variation in the number of bidders is exogenous to bidder valuations (in order to
obtain tighter, more meaningful bounds on the reserve price).

� Data description. Our data is the same as that used by Athey, Coey, and Levin (2013)
and comes from ascending auctions held in California between 1982 and 1989, in which there
were at least three entrants. There are 1086 such auctions. These auctions had reserve prices,
but they were low, only binding in 1.1% of cases, and we therefore treat the auctions as though
they did not have reserve prices. For each auction, the data contains all bids, the number of
bidders, and information on the bidders’ identities, as well as auction-level information. These
auction-level characteristics include appraisal variables (quintiles of the reserve price, selling
value, manufacturing costs, logging costs, road construction costs, and dummies for missing road
costs and missing appraisals), sale characteristics (species Herfindahl Index, density of timber,
salvage sale or scale sale dummies, deciles of timber volume, and dummies for forest, year,
and primary species), and local industry activity (number of logging companies in the county,
sawmills in the county, small firms active in the forest-district in the last year, and big firms active
in the forest-district in the last year).

� Bounding counterfactual revenue changes. We first address the following question:
should the seller—in this case, the government—at these timber auctions, bother to compute
an optimal reserve price? Computing an optimal reserve price requires effort in practice, and
recent work has highlighted the extreme asymmetric payoff to sellers from mistakes in choosing
reserve prices: setting too high a reserve price can lead to losses much larger in magnitude than
the losses from setting too low a reserve price (see Kim, 2013; Ostrovsky and Schwarz, 2016; and
Coey et al., 2018). Thus, the seller may find it useful to first gauge whether the investment in op-
timal auction design would be worthwhile, or whether she should instead simply run a no-reserve
auction (which requires no pricing decision on the part of the seller). The bidder exclusion effect
serves as a useful diagnostic for such an initial assessment.

We begin by estimating the bidder exclusion effect ( 2
n

E(Bn−1:n − Bn−2:n)) at various values
of n. Figure 1 shows this quantity, both as a percentage of revenue, and in absolute terms.17 Note
that Figure 1 is simply an illustration of summary statistics of the data; it is only through the lens

17 The larger confidence interval for the n = 7 auctions in the right panel of Figure 1 is driven by an outlier (an
outlier in terms of its realization of Bn−1:n − Bn−2:n , but not as a percentage of revenue, (Bn−1:n − Bn−2:n)/Bn−1:n , and thus
in the left panel, the effect is still precisely measured).
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FIGURE 1

BOUNDING THE BIDDER EXCLUSION EFFECT [Color figure can be viewed at wileyonlinelibrary.com]
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Notes: graphs show point estimates and 95% pointwise confidence intervals for 2
n

E(Bn−1:n − Bn−2:n), for various
values of n, the total number of entrants in the auction. Estimates in the left graph are expressed as a percentage of auction
revenue. Estimates in the right graph are expressed in dollars per thousand board feet.

of our framework that these summary statistics have an interpretation as being informative about
counterfactual revenue changes.18

The range of the bidder exclusion effect in the left panel of Figure 1 ranges from about 20%
to less than 5%, decreasing sharply as n increases. Averaging over all values of n, the average
bidder exclusion effect is 12% of auction revenue, with a standard error of 0.4%. Under the
conditions of Proposition 1, the average increase in revenue from setting an optimal reserve price
is therefore less than about 13% of revenue. We see this bound as large enough that a seller at
these auctions would likely find it worthwhile to invest in determining an optimal reserve price.
These estimated bounds on the revenue impact of optimal reserve prices are consistent with those
found in previous structural timber auctions studies, but the bounds we compute require only a
small fraction of the computational cost of these previous approaches and as such, can serve as a
useful initial diagnostic in practice.19

� Testing independence of valuations and N . We now turn to the following question:
if the seller does wish to compute the optimal reserve price itself—or bounds on the optimal
reserve price—can she safely rely on exogenous variation in the number of bidders in doing
so? Two prominent methods for obtaining bounds on the optimal reserve price in ascending

18 As discussed in Section 5, a quantity related to the bidder exclusion effect can also provide a bound on the fall
in revenue from two bidders merging, given by 2

n(n−1)
E(Bn−1:n − Bn−2:n). In our data, we find this quantity to be 4% of

revenue. A bound on the loss in seller revenue when, instead, two nonrandom bidders merge can be recovered simply by
scaling the values in Figure 1 by a factor of n/2, yielding the expected gap between the second and third order statistics.
Bidder mergers at timber auctions are studied in Brannman and Froeb, 2000; Athey, Levin, and Seira, 2011; Li and Zhang,
2015.

19 Optimal reserve prices and the gain from implementing the optimal reserve are examined in other timber auction
settings in Paarsch, 1997; Li and Perrigne, 2003; Haile and Tamer, 2003; Roberts and Sweeting, 2013, 2016; Aradillas-
López, Gandhi, and Quint, 2013; Coey et al., 2017.
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TABLE 1 Unconditional Tests for Dependence of Valuations and N , All Auctions

Entrants 3 4 5 6 7 8

a1 78.15*** 92.34*** 119.75*** 125.64*** 123.16*** 147.24***

(6.36) (4.62) (4.81) (11.14) (6.69) (9.65)
a2 49.60*** 78.37*** 89.09*** 119.66*** 125.02*** 130.46***

(2.62) (6.43) (3.50) (4.85) (11.15) (12.04)
T (n) = a1 − a2 28.55*** 13.97 30.66*** 5.98 −1.86 16.78

(6.87) (7.92) (5.95) (12.15) (13.00) (15.43)
Sample size 497 496 456 350 243 164

Standard errors in parentheses.
*p < 0.05, **p < 0.01, ***p < 0.001.

Notes: Table presents results of test for dependence of valuations and N unconditional on covariates, for various levels
of the number of entrants.

TABLE 2 Conditional Tests for Dependence of Valuations and N , All Auctions

Entrants 3 4 5 6 7 8

a1 −44.52 −120.64 3.34 −95.81** −111.39 −172.47
(59.38) (74.72) (24.72) (32.93) (71.81) (159.06)

a2 −64.84 −137.66 −10.47 −89.90** −124.05 −167.05
(59.39) (75.24) (25.01) (31.83) (72.75) (145.70)

T (n) = a1 − a2 20.32*** 17.02*** 13.81*** −5.91 12.66* −5.42
(5.33) (4.21) (3.63) (4.75) (5.78) (17.94)

Sample size 497 496 456 350 243 164

Heteroskedasticity-robust standard errors in parentheses.
*p < 0.05, **p < 0.01, ***p < 0.001.

Notes: Table presents results of test for dependence of valuations and N conditional on covariates as described in
Section 4, for various levels of the number of entrants.

auction settings—Haile and Tamer (2003) and Aradillas-López, Gandhi, and Quint (2013), as
well as the method for asymmetric environments in Coey et al. (2017), all of which study timber
auctions—rely on the assumption that valuations are independent of N in order to obtain tight,
meaningful bounds on revenue and on the optimal reserve price itself, as we discuss in more detail
below. Similarly, Brannman and Froeb (2000) study merger effects at timber auctions and build
a model that relies on the assumption that valuations are independent of N . To address whether
this assumption is reliable, we apply our test developed in Section 4.

We begin with the simplest version of the test, without controlling for covariates. Table 1
displays the results. In the table, a1 represents the expected second order statistic when a bidder
is removed at random from n bidder auctions, a2 represents the expected second order statistic in
n − 1 bidder auctions when the actual number of bidders is indeed n − 1, and the test statistic is
given by T̂ (n) = a1 − a2. For most n ∈ {3, . . . , 8}, T̂ (n) is insignificant, although at n = 3 and
n = 5, the test statistic is significant and positive, indicating that dependence between valuations
and the number of bidders may be a concern. Intuitively, a positive T (n) indicates that bidders’
values are higher in n than n − 1 bidder auctions, as might be the case when goods that are more
attractive (in a way that is unobservable to the econometrician) tend to draw many bidders.

Table 2 shows the results of the test conditional on auction characteristics. The objects a1, a2,
and T (n) are as in Table 1, but after controlling for the auction-level covariates listed above (the
same controls as in Athey, Coey, and Levin, 2013), following the parametric procedure described
in Section 4).20 Table 2 shows that there is stronger evidence for dependence of valuations and

20 Note that, due to the small sample size, this analysis only controls linearly for a number of different types of
sales (as in Athey, Levin, and Seira, 2011; and Athey, Coey, and Levin, 2013). If the sample size were larger, it would be
possible to evaluate the independence of bidder valuations and the number of bidders separately in subsamples of these
different types of sales rather than grouping them all together.
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TABLE 3 Conditional Tests for Dependence of Valuations and N , Auctions with Only Loggers

Entrants 3 4 5 6

a1 −158.28 −183.18 26.03 −285.34**

(108.96) (115.53) (42.50) (115.06)
a2 −172.28 −222.73 8.53 −266.30

(105.59) (128.23) (43.13) (111.34)
T (n) = a1 − a2 14.00 39.54* 17.51 −19.04

(16.65) (19.29) (9.92) (25.66)
Sample size 149 138 109 76

Heteroskedasticity-robust standard errors in parentheses.
*p < 0.05, **p < 0.01, ***p < 0.001.

Notes: Table presents results of test for dependence of valuations and N conditional on covariates as described in
Section 4, for various levels of the number of entrants, and only for auctions in which all entrants are loggers.

the number of bidders when controlling for auction characteristics than in the unconditional case.
Conditional on auction characteristics, average revenue when a bidder is removed at random from
n bidder auctions is higher than average revenue in n − 1 bidder auctions when n ∈ {3, 4, 5, 7},
and this difference is significant at the 95% level. Again, one explanation for this would be
positive selection: bidders’ valuations appear to be higher in auctions with more participants.
With n ∈ {6, 8}, the difference is negative and insignificant, consistent with a setting where
valuations are independent of N . The joint null hypothesis of independence of valuations and the
number of bidders across all n ∈ {3, . . . , 8} can be rejected at the 99.9% level.

Some bidders in timber auctions may be stronger than others. One common distinction in
the literature is between mills, who have the capacity to process the timber, and loggers, who
do not. Mills typically have higher valuations than loggers (e.g., Athey, Levin, and Seira, 2011;
Athey, Coey, and Levin, 2013; Roberts and Sweeting, 2016; Coey et al., 2017). The evidence
of dependence in valuations and N above may be driven by differences in logger and mill entry
patterns. We next turn to the question of whether evidence of dependence exists, even after
restricting attention to a more homogeneous subset of bidders—in this case, loggers.21

Table 3 shows the results. The sample size is significantly smaller when restricting to auctions
in which all entrants are loggers, which reduces the power of the test.22 At n = 4, the test still
rejects the null hypothesis that valuations are independent of N . However, the evidence on the
whole is much weaker in the loggers-only sample: at n ∈ {3, 5, 6}, the difference is much smaller
and insignificant, although these results should be interpretted with caution, as the smaller sample
size may play a role. The joint null hypothesis of independence of valuations and the number
of bidders across all n can no longer be rejected as it was before accounting for asymmetries.
Together, the results from Tables 2 and 3 suggest that dependence between valuations and the
number of bidders may be a feature of timber auctions but is less pronounced after accounting
for bidder types.

� Implications of test. Rejecting or failing to reject the independence of valuations and the
number of bidders has a number of implications for analyzing auction data. Haile and Tamer
(2003) and Aradillas-López, Gandhi, and Quint (2013), two of the most influential methodolog-
ical innovations for ascending auction settings, both rely on the assumption that valuations are

21 There are too few auctions without logger entrants (only 21) to present the same analysis for mills.
22 One might be concerned that the restriction to logger-only auctions may be selecting on a potentially endogenous

variable. The framework and results of Athey, Coey, and Levin (2013) suggest that this may not be a concern; the authors
find that the estimated (asymmetric) value distributions are such that if loggers enter with positive probability, then all
potential mills would enter. Thus, restricting attention to auctions with no mills entering is also restricting attention to
auctions in which there were no potential mills available to enter. Within the Athey, Coey, and Levin (2013) framework,
and in many other empirical auction settings, this number of potential entrants is considered to be exogenous (unlike the
number of actual entrants).
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independent of the number of bidders in order to obtain meaningful bounds on seller profit and
on optimal reserve prices.23 In the setting of Haile and Tamer (2003), if the assumption of inde-
pendence of valuations and the number of bidders is violated (as appears to be so in several of
the cases examined in our data), the Haile and Tamer (2003) approach can still yield bounds on
seller profit and on the optimal reserve price in symmetric IPV auctions, but these bounds will be
looser than if the researcher were able to confidently exploit exogenous variation in the number
of bidders.

In the symmetric correlated private values setting of Aradillas-López, Gandhi, and Quint
(2013) (or in the related asymmetric correlated private values setting of Coey et al., 2017),
the authors demonstrate that their two-sided bound on seller profits is only available when
valuations are independent of the number of bidders. If valuations and the bidder count are
positively dependent, a one-sided bound on seller revenue still holds, but no meaningful bound
on the optimal reserve price is available. If valuations and the number of bidders are negatively
dependent, bounds on seller revenue and optimal reserve prices will be unavailable or will be
uninformative. The diagnostic test we propose herein can help the researcher determine whether
or not she can exploit exogenous variation in the number of bidders to obtain meaningful bounds
in these settings.

If the test rejects the independence of bidder valuations and the number of bidders, the
researcher can incorporate this knowledge by placing more structure on the model, either by
explicitly modelling a dependence between unobserved heterogeneity and the number of bidders,
or by incorporating a model of bidders’ entry decisions. Modelling entry into auctions has been a
major innovation in recent work, including a number of studies of timber auctions (such as Athey,
Coey, and Levin, 2013; Roberts and Sweeting, 2013; Aradillas-López, Gandhi, and Quint, 2013;
and Roberts and Sweeting, 2016). The bidder exclusion effect test is one tool, among others, that
can help the researcher in determining whether the additional modelling complexity required to
explicitly account for entry is warranted.

7. Discussion of extensions

� In this section, we discuss a number of different extensions of the uses of the bidder exclusion
effect to more general environments.

� Common values. In the private values setting in the main body of the article, the change
in auction revenue when one bidder is excluded can be computed by removing one bidder’s bid,
and calculating the fall in revenue, assuming the other bids remain unchanged. This is not true
with common values, as removing a bidder changes the remaining bidders’ equilibrium bidding
strategies. Results in Athey and Haile (2002) can be used to show that in ascending button
auctions with symmetric common values and symmetric bidding strategies, in any separating
equilibrium, �(n) < �bid(n).24 Removing one bidder’s bid and assuming other bids remain un-
changed (�bid(n)) thus overstates the decline in revenue from actually excluding a random bidder,
because it does not account for the increase in bids due to the reduced winner’s curse.

The test proposed in Section 4 can still be applied in the common values setting, but will
only indicate dependence between valuations and N if T̂ (n) is significantly greater than zero,
and not if it is significantly less than zero.25 This test is consistent against forms of dependence

23 In addition to those methodologies discussed herein, other approaches found in Sections 5.3 and 5.4 of Athey
and Haile (2007) also rely on the assumption that valuations are independent of the number of bidders.

24 Note that in discussing common values in this subsection, we depart from the main body of the article in
our equilibrium concept and focus here on Bayes Nash Equilibria. Common value ascending auctions may have many
equilibria; however, the results of Bikhchandani, Haile, and Riley (2002) demonstrate that this inequality is true in
any symmetric, separating equilibrium of an ascending auction. Importantly, it will not necessarily hold in equilbria in
asymmetric strategies.

25 More precisely, in the case of common values, the exercise would be to test whether valuations and signals are
independent of N , as valuations and signals are not synonymous in a common values setting.
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in which bidders’ values are sufficiently increasing with N . As highlighted in Aradillas-López,
Gandhi, and Quint (2013, 2016), this type of positive dependence is particularly the kind that can
occur in many popular entry models (see Aradillas-López, Gandhi, and Quint, 2016, Appendix
B.5). This one-sidedness feature of our test in this case is shared by the test in private values
settings proposed in Aradillas-López, Gandhi, and Quint (2016), which the authors explain “has
power against a fairly wide class of ‘typical’ violations of [valuations being independent of N ].”

The application of the bidder exclusion effect to bounding counterfactual revenue under an
optimal reserve price applies in common values settings as well. In particular, when bidders have
affiliated signals, Bulow and Klemperer (1996) show that an auction with n + 1 bidders and no
reserve price still outperforms any “standard” mechanism with n bidders.26 To apply the bidder
exclusion effect to bound counterfactual revenue in common value auctions, however, we are
required to make one additional assumption: that the magnitude of the change in revenue from
adding a random bidder is smaller than the magnitude of the change from removing a bidder.
With conditionally independent private values, we prove this as a result (Proposition 1), but with
common values, it must be imposed directly as an assumption, making the counterfactual revenue
bound in common values setting less appealing. However, what is appealing about this revenue
bound in common value ascending auctions is that it yields a bound on revenue in a setting where
no known identification (or even partial identification) results exist in the auction methodology
literature for the optimal reserve price itself. We do not extend our bidder merger analysis to the
common values case.

� Nonbutton ascending auctions. In the button auction model of ascending auctions with
private values (Milgrom and Weber, 1982), bidders drop out at their values. As highlighted in
Haile and Tamer (2003), in practice, bidders’ (highest) bids may not equal their values. For
example, in English auctions, multiple bidders may attempt to bid at a certain price but only the
first bidder the auctioneer sees may be recorded. Jump bidding or minimum bid increments may
also lead to cases where bids do not equal values. Additionally, in some cases, a bidder may drop
out at a low-bid level, planning to participate again but never doing so as the bidding rises past
her value.

A simple extension of our model that allows for some nonbutton behavior is to assume that
the final auction price still represents the second-highest bidder’s valuation, but that any lower
bidder’s bids are weakly lower than their valuations.27 Under this low-bidding assumption, it is
straightforward to demonstrate that �(n) ≤ �bid(n). As with the common values case, where this
inequality was instead strict, the test of exogeneity of N still applies but can only reject certain
forms of exogeneity. The use of the bidder exclusion effect to bound counterfactual revenue under
an optimal reserve price or under bidder mergers immediately extends to this low-bidding case. In
Appendix B, we demonstrate how the bidder exclusion effect can be computed in an environment
that more closely (although still not perfectly) resembles that of Haile and Tamer (2003).28

26 A “standard” mechanism in this context is one in which i) losers pay nothing, ii) the bidder with the highest
signal wins (if anyone) and pays an amount that increases in his own signal given any realization of other bidders’ signals.
Bulow and Klemperer (1996) highlight a result of Lopomo’s (1995), which shows that an optimal mechanism in this class
is an English auction followed by a final, take-it-or-leave-it offer to the high bidder (a reserve price). When bidders have
correlated values, Crémer and McLean (1988), McAfee, McMillan, and Reny (1989), and McAfee and Reny (1992) have
provided examples of nonstandard mechanisms that extract all bidder surplus and outperform an auction with a reserve
price. Also, in later work, Bulow and Klemperer (2002) highlighted that the assumption of marginal revenues increasing
in signals may be more stringent in common values settings than in private values settings, and the authors provided
examples of common values settings in which the original Bulow and Klemperer (1996) result will not hold when the
condition of increasing marginal revenues is violated.

27 Athey and Haile (2002) argue, “... for many ascending auctions, a plausible alternative hypothesis is that bids
Bn−2:n and below do not always reflect the full willingness-to-pay of losing bidders, although Bn−1:n does (since only two
bidders are active when that bid is placed).”

28 There, our environment still rules out some kinds of jump bidding that would be allowed within the more general
Haile and Tamer (2003) framework. We note, however, that our environment throughout the article is more general than
that of Haile and Tamer (2003) in another dimension, in that it allows for correlation between bidders’ values.
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� Unobserved number of bidders. In some settings, the number of bidders may not be
known to the researcher. In ascending auctions, for example, not all potential bidders may place
bids. A lower bound on the number of potential bidders may be known, however, such as in cases
where the researcher only observes bids of bidders whose valuations exceed a reserve price. Let n
represent this lower bound, such that for all realizations n of the random variable N , n > n. In this
case, an upper bound on the average bidder exclusion effect, E(�(N )), is given by averaging over
realized order statistics from samples of unknown N , yielding E(�(N )) ≤ 2

n
E(B N−1:N − B N−2:N ).

This quantity can then be used to compute an expected upper bound on the seller revenue changes
from using an optimal reserve price or from mergers. As with the main presentation of the bidder
exclusion effect in Section 3, this upper bound on the average bidder exclusion effect can also
be estimated conditional on auction-level unobservables. In addition, the researcher may wish to
estimate the lower bound n conditional on auction-level unobservables to obtain a better overall
upper bound on the bidder exclusion effect. Note that the testing procedure described in Section 4
cannot be used if the number of bidders is unobserved, because it explicitly requires observing
realizations of N .

� Asymmetric bidders. If bidders have private values but are asymmetric—that is, their
indices in the joint distribution of valuations are nonexchangeable—then the test for independence
of valuations and N can still be applied. However, the notion of independence between valuations
and N is less straightforward in this case, and it less clear what it might mean if a test rejects the
assumption. Intuitively, values may fail to be independent of N either because different bidders
are more likely to enter depending on N , or because the same bidders enter but the value of the
goods sold varies by N . We formalize and prove this statement in Appendix B, following the
setup of Coey et al. (2017).

The bound on counterfactual revenue under an optimal reserve price no longer applies with
bidder asymmetries, as the Bulow and Klemperer (1996) result requires bidder symmetry. In
particular, it is difficult to conceptualize what type of bidder would be implied by the “additional
random bidder” in the Bulow-Klemperer setting when bidders are asymmetric. The merger case,
however, immediately applies even if bidders are asymmetric. This is useful given that Tschantz,
Crooke, and Froeb (2000), Dalkir, Logan, and Masson (2000), Li and Zhang (2015), and others
argue that allowing for bidder asymmetries is particularly important to capture realistic aspects
of mergers in auction settings.

� A test using all bids from button auctions. Here, we return to the framework addressed
in the body of the article but consider the question of how, taking the button auction assumption
seriously, the econometrician could use all bids—rather than just those of the second- and third-
highest value bidders—to test for the independence of valuations and N .

Suppose the econometrician observes auctions in which there are n bidders, n + 1 bidders,
all the way to n̄ bidders for some n̄ > n. For now, let n be fixed. For k = 1, . . . , n̄ − n, the test
described in Section 4 can be extended to compare revenue in auctions with n bidders to revenue
in auctions with n + k bidders, where k bids have been randomly removed. This latter object can
be computed as follows for an auction j in which n + k bidders were present:

1(
n+k

k

) k+1∑
ι=1

(
ι

ι − 1

)(
n + k − (ι + 1)

k − (ι − 1)

)
bn+k−ι:n+k

j . (12)

The denominator at the beginning of equation (12),
(

n+k
k

)
, indicates the number of different ways

k bids could be dropped from n + k bids. On the interior of the sum in equation (12), the order
statistic bn+k−ι:n+k

j can only be the revenue-setting bid if the set of k randomly removed bids does
not include the (ι + 1)th-highest bid (i.e., the bid bn+k−ι:n+k

j ) and does include ι − 1 out of the ι

highest bids (this is captured by the term
(

ι

ι−1

)
in equation (12)). The remaining k − (ι − 1) bids
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in the set of k bids dropped can come from any of the other n + k − (ι + 1) lower bids (this is
captured by the term

(
n+k−(ι+1)

k−(ι−1)

)
in equation (12)).

Still treating n as fixed, the parametric test presented in (9) can then be modified as follows.

yj =
n̄−n∑
k=0

ak + β X j + ekj , (13)

where if j ∈ An+k , then yj is replaced by the value from (12). The objects ak are indicators for
which value of k the auction revenue measure yj comes from (where k = 0 means the actual
revenue in n bidder, auctions. The test for independence of valuations and the number of bidders
can then be performed through a Wald test, testing simultaneously for whether all the coefficients
ak are equal to zero.

This same procedure can be performed for multiple values of n simultaneously, compar-
ing, for example, three-bidder auctions to five-bidder auctions with two bidders removed, and
simultaneously comparing four-bidder auctions to six-bidder auctions with two bidders removed.
To do so, the regression equations in (13) can be formed for each value of n, and then stacked
in a Seemingly Unrelated Regression (SUR, Zellner, 1962). The Wald test would then use the
estimated coefficients on all of the indicator variables ak for each value of n, and the SUR
variance-covariance matrix (allowing the regression errors to be correlated within each value of
the number of bidders actually present at the auction, n + k) to test the null hypothesis that all of
these coefficients are equal to zero.

� Other extensions: binding reserve prices and first-price auctions. The testing procedure
and optimal revenue-bounding procedure can be applied in ascending auctions with binding
reserve prices or in first-price auctions. The presentation of these results requires a number of
additional proofs, however, and we therefore present these results in Appendix B.

8. Conclusion

� We developed a computationally simple test of independence of bidders’ valuations and the
number of bidders, a commonly invoked assumption in structural empirical auctions work. The
test relies on computing the decrease in seller revenue from removing at random one of n bidders
from the auction and comparing this quantity to the actual revenue difference between n and n − 1
bidder auctions. We demonstrated that this quantity—the bidder exclusion effect—can also be
used to bound counterfactual changes in revenue from the seller adopting an optimal reserve price
or from bidders merging. We applied our proposed test to data from timber auctions, a setting
in which the assumption of bidder valuations being independent of the number of bidders has
been exploited in a number of studies. We found evidence to reject this independence assumption
in our data. We derived our main results within a symmetric, conditionally independent private
values settings at ascending button auctions, and then discussed a number of extensions to other
environments.

We believe that this tool is also likely to be useful for other questions as well. For example,
the bidder exclusion effect may be useful in multiunit auction settings or Internet search position
auctions. As another example, the bidder exclusion effect can provide a simple specification check
of standard assumptions in empirical auctions analysis: under the assumption of independent
private values in button auctions, one can invert the second-order statistic distribution to obtain
an estimate of the underlying distribution of buyer valuations (Athey and Haile, 2007) and
simulate the revenue increase under an optimal reserve price; if the simulated revenue increase
exceeds the bidder exclusion effect, the validity of either the assumption of independence or the
assumption of private values—or both—is in question.
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Appendix A

This Appendix contains proofs of Propositions 1 and 2.

� Proof of Proposition 1. Proof. We first prove that if Z1, . . . , Zn+1 are i.i.d. random variables,

E(max{Z1, . . . , Zn}) − E(max{Z1, . . . , Zn−1}) ≥
E(max{Z1, . . . , Zn+1}) − E(max{Z1, . . . , Zn}). (A1)

For any z1, . . . , zn+1 ∈ Rn+1,

max{0, zn+1 − max{z1, . . . , zn−1}} ≥ max{0, zn+1 − max{z1, . . . , zn}}, (A2)

implying

max{z1, . . . , zn−1, zn+1} − max{z1, . . . , zn−1} ≥ max{z1, . . . , zn+1} − max{z1, . . . , zn}. (A3)

Consequently, for any random variables Z1, . . . , Zn+1,

E(max{Z1, . . . , Zn−1, Zn+1}) − E(max{Z1, . . . , Zn−1}) ≥
E(max{Z1, . . . , Zn+1}) − E(max{Z1, . . . , Zn}), (A4)

because (A3) holds for every realization z1, . . . , zn+1 of Z1, . . . , Zn+1. If the Zi are i.i.d., then
E(max{Z1, . . . , Zn−1, Zn+1}) = E(max{Z1, . . . , Zn}), yielding (A1).

The expected revenue from any mechanism is the expected marginal revenue of the winning bidder (Myerson,
1981). Ascending auctions assign the good to the bidder with the highest valuation, and therefore highest marginal
revenue, because marginal revenue is increasing in valuations. It follows that expected revenue with n bidders is
E(maxM R(V1), . . . , M R(Vn)). As M R(V1), . . . , M R(Vn+1) are i.i.d. random variables, we have

E(max{M R(V1), . . . , M R(Vn)}) − E(max{M R(V1), . . . , M R(Vn−1)}) ≥
E(max{M R(V1), . . . , M R(Vn+1)}) − E(max{M R(V1), . . . , M R(Vn)}), (A5)

implying that Proposition 1 holds in independent private values settings. When there exists a random variable U such
that bidder values V1, . . . , Vn are i.i.d. conditional on U , if marginal revenue is increasing in values conditional on each
realization of U , then the above proof applies conditional on each realization of U . Taking expectations over U , it follows
that Proposition 1 holds in CIPV environments if bidders’ marginal revenue curves are increasing in values conditional
on each value of U. �

� Proof of Proposition 2. Proof. Let i and j represent the bidders who merge, and without loss of generality, let
Vi ≥ Vj . Let M1:n−1, ..., Mn−1:n−1 represent order statistics of {Mk}k �=i, j ∪ {Mi, j }. Revenue in the presence of the merger
will be given by Mn−2:n−1, and thus the revenue loss due to the merger is given by E[Bn−1:n − Mn−2:n−1]. If j , the
lower-valued bidder in the joint entity, is such that Vj = V k:n for some k ∈ {1, ..., n − 2}, then revenue will not drop due
to the merger, because in this case,

Mn−2:n−1 ≥ V n−1:n (A6)

= Bn−1:n, (A7)

where the first line holds by Assumption 1. The only case where revenue may potentially drop is instead when j is such
that Vj = V n−1:n , in which case,

Mn−2:n−1 = V n−2:n (A8)

≥ Bn−2:n, (A9)

where the first line holds by Assumption 1. Therefore, an upper bound the loss in revenue due to two bidders merging is
given by

E[Bn−1:n − Mn−2:n−1] ≤ E[Bn−1:n − Bn−2:n], (A10)

proving (ii).
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The proof of (i) follows by noting that if two bidders are randomly selected, only one such pair of bidders i,j is
such that j , the lower-valued bidder, has Vj = V n−1:n , and the probability of selecting this pair is given by 1

(n
2)

= 2
n(n−1)

.

Therefore,

E[Bn−1:n − Mn−2:n−1] ≤ 2

n(n − 1)
E[Bn−1:n − V n−2:n] = 1

n − 1
�(n),

proving the result. �

Appendix B

This appendix contains extensions to settings with binding reserve prices, first price auctions, non-button English auctions,
and settings with asymmetric bidders, as well as Monte Carlo simulations demonstrating the power of the test proposed
in the body of the paper.

� Auctions in which reserve prices are present. We consider ascending auctions with private values where bidders
bid their values, and where there is a reserve price below which bids are not observed (i.e., a binding reserve price). We
modify our notation accordingly: �(n, r ) denotes the fall in expected revenue produced by randomly excluding a bidder
from n bidder auctions, when the reserve price is r.

Proposition 3. In ascending auctions with private values and a reserve price of r where bidders bid their value, for all
n > 2, the bidder exclusion effect �(n, r ) = 2

n
E(Bn−1:n − max(Bn−2:n, r )|r ≤ Bn−1:n) Pr(r ≤ Bn−1:n) + 1

n
r Pr(Bn−1:n <

r ≤ Bn:n).

Proof. If r ≤ Bn−1:n , then with probability 2
n
, dropping a bidder at random will cause revenue to fall from Bn−1:n to

max(Bn−2:n, r ), so that in expectation, revenue falls by 2
n

E(Bn−1:n − max(Bn−2:n, r )|r ≤ Bn−1:n). If Bn−1:n < r ≤ Bn:n ,
then with probability 1

n
, dropping a bidder at random will cause revenue to fall from r to 0. If Bn:n < r , then dropping a

bidder at random will not change revenue. These observations imply the result. �

This expression for �(n, r ) can be estimated given observed data, as it does not depend on knowing the value of
bids lower than the reserve price.

When the reserve price equals r in both n and n − 1 bidder auctions, the expected revenue difference between those
auctions is

E(max(Bn−1:n, r )|r ≤ Bn:n) Pr(r ≤ Bn:n)

− E(max(Bn−2:n−1, r )|r ≤ Bn−1:n−1) Pr(r ≤ Bn−1:n−1). (B1)

FIGURE B1

MONTE CARLO POWER COMPARISON [Color figure can be viewed at wileyonlinelibrary.com]
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(A) Three and Four bidder auctions
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(B) Four and Five bidder auctions

Notes: Figures show the simulated probability of rejecting the null hypothesis of no selective entry for various levels
of entry selectiveness (with greater σε corresponding to less selective entry), for two tests: one based on a comparison
of means between n and n + 1 bidder auctions, and one based on the bidder exclusion effect computed on n and n + 1
bidder auctions. The left panel shows the case of n = 3, and the right panel shows the case of n = 4.
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If valuations are independent of N , then Fn
n−1 = Fn−1

n−1 = Fn−1 and hence expression (B1) equals the expression for �(n, r )
of Proposition 3. As in Section 4, we can test this hypothesis with a t-test, where the test statistic is formed by replacing
expectations by sample averages. This test is consistent against forms of dependence between valuations and N that affect
expected revenue, that is, such that E(max(Bn−2:n−1,n, r )|r ≤ Bn−1:n−1,n) Pr(r ≤ Bn−1:n−1,n) �= E(max(Bn−2:n−1, r )|r ≤
Bn−1:n−1) Pr(r ≤ Bn−1:n−1).

This test can be adapted to incorporate covariates. The null hypothesis is:

E

(
1(r ≤ Bn−1:n)

(
n − 2

n
Bn−1:n + 2

n
max{Bn−2:n, r}

)
+ 1(Bn−1:n < r ≤ Bn:n)

n − 1

n
r | X

)

= E(1(r ≤ Bn−1:n−1) max{Bn−2:n−1, r}|X ). (B2)

This states that, conditional on covariates, revenue in n bidder auctions when one bidder is dropped at random equals
revenue in n − 1 bidder auctions. The regression-based test of Section 4 can be modified to test this restriction.

For the application to optimal mechanism design, we require an upper bound on �(n, 0). Using the fact that bids
are nonnegative, we can write this upper bound as the sum of three separate conditional expectations, one for each of the
possible orderings of r , Bn−2:n , and Bn−1:n :

�(n, 0) = 2

n
E(Bn−1:n − Bn−2:n |r ≤ Bn−2:n) Pr(r ≤ Bn−2:n)

+ 2

n
E(Bn−1:n − Bn−2:n |Bn−2:n < r ≤ Bn−1:n) Pr(Bn−2:n < r ≤ Bn−1:n)

+ 2

n
E(Bn−1:n − Bn−2:n |Bn−1:n < r ) Pr(Bn−1:n < r ) (B3)

≤ 2

n
E(Bn−1:n − Bn−2:n |r ≤ Bn−2:n) Pr(r ≤ Bn−2:n)

+ 2

n
E(Bn−1:n |Bn−2:n < r ≤ Bn−1:n) Pr(Bn−2:n < r ≤ Bn−1:n)

+ 2

n
r Pr(Bn−1:n < r ). (B4)

The terms in (B4) do not depend on knowing the value of bids lower than the reserve price, and can be estimated given
observed data. The application to mergers can be extended analogously.

� First-price auctions. We now give upper and lower bounds on the bidder exclusion effect in first-price auctions
with symmetric IPV, and symmetric conditionally independent private values (CIPV). Unlike the ascending button
auction case, in first-price auctions, there is a distinction between the CIPV environment and an IPV environment with
unobserved auction-level heterogeneity; our results here only apply to the CIPV case. Let b(Vi , Fn) denote bidder i’s
equilibrium bid, as a function of his value, Vi , and the distribution of bidders’ valuations, Fn . We assume Vi is continuously
distributed on some interval [0, u]. In this section, we use subscripts to make explicit the distribution with respect to
which expectations are taken, for example, expected revenue with no reserve price is EFn (b(V n:n, Fn)) in n bidder
auctions and is EFn

n−1
(b(V n−1:n−1, Fn

n−1)) when one of the n bidders is randomly excluded. The bidder exclusion effect is
�(n) ≡ EFn (b(V n:n, Fn)) − EFn

n−1
(b(V n−1:n−1, Fn

n−1)).

Proposition 4. In first-price auctions, if (i) bidders have symmetric independent private values, or (ii) there is a random
variable U common knowledge to bidders such that bidders have symmetric independent private values conditional on
U , then EFn (b(V n:n, Fn)) − EFn

n−1
(b(V n−1:n−1, Fn)) < �(n) < EFn (b(V n:n, Fn)) − EFn

n−1
(b(V n−2:n−1, Fn)).

Proof. We first consider the case of symmetric independent private values. For the lower bound, note that in sym-
metric independent private values settings, equilibrium bids are strictly increasing in n: b(vi , Fn) > b(vi , Fn

n−1) (see,
e.g., Krishna, 2009). This implies EFn

n−1
b(V n−1:n−1, Fn) > EFn

n−1
b(V n−1:n−1, Fn

n−1), and therefore EFn (b(V n:n, Fn)) −
EFn

n−1
b(V n−1:n−1, Fn) < �(n).
For the upper bound, we have

EFn
n−1

(b(V n−2:n−1, Fn)) < EFn
n−1

(V n−2:n−1) (B5)

= EFn
n−1

(b(V n−1:n−1, Fn
n−1)). (B6)

The inequality holds because equilibrium bids are strictly less than values. The equality holds by revenue equivalence of
first- and second-price auctions with symmetric independent private values. It follows that �(n) < EFn (b(V n:n, Fn)) −
EFn

n−1
(b(V n−2:n−1, Fn)).
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If values are symmetric and CIPV, then because U is common knowledge to bidders, these lower and upper bounds
hold conditional on every realization of U , and therefore hold unconditionally, taking expectations with respect to U . The
bounds thus extend to the conditionally independent private values case. �

The lower bound above is the expected fall in revenue in n bidder auctions when one bid is removed at random,
assuming the good will be sold at a price equal to the highest of the remaining bids. The upper bound is the expected fall
in revenue in n bidder auctions when one bid is removed at random, assuming the good will be sold at a price equal to
the second highest of the remaining bids. The following corollary characterizes these bounds more explicitly in terms of
the bids from n bidder auctions.

Corollary 2. In first-price auctions, if (i) bidders have symmetric independent private values, or (ii) there is a random
variable U common knowledge to bidders such that bidders have symmetric independent private values conditional on
U , then

1

n

(
EFn (b(V n:n, Fn)) − EFn (b(V n−1:n, Fn))

)
< �(n) (B7)

and

�(n) <
n − 2

n

(
EFn (b(V n:n, Fn)) − EFn (b(V n−1:n, Fn))

)+

2

n

(
EFn (b(V n:n, Fn)) − EFn (b(V n−2:n, Fn))

)
. (B8)

Proof. For the lower bound, note that with probability n−1
n

, dropping a bid at random will not change the highest bid,
and with probability 1

n
, the highest bid will drop from b(V n:n, Fn) to b(V n−1:n, Fn). For the upper bound, note that

with probability n−2
n

, the difference between the highest bid in the original sample and the second-highest bid after one
bid has been dropped at random is b(V n:n, Fn) − b(V n−1:n, Fn), and with probability 2

n
, it is b(V n:n, Fn) − b(V n−2:n,

Fn). �

Several remarks on these bounds are in order.

Remark 1. The lower bound in Proposition 4 also holds under the more general setting of symmetric correlated private
values, as long as equilibrium bids are strictly increasing in n.29

Remark 2. The upper bound in Proposition 4 also holds if bidders are risk-averse instead of risk-neutral, as first-price
auctions raise more revenue than ascending auctions with symmetric risk-averse bidders in IPV environments (Riley and
Samuelson, 1981).

Remark 3. In the CIPV case, if U is not common knowledge amongst bidders, then bidders’ private information is
correlated conditional on what they know at the time of bidding. This affects equilibrium bidding behavior and the
argument of Proposition 4 does not hold.

Remark 4. The upper bound of Proposition 4 can be replaced by
EFn (b(V n:n, Fn)) − EFn′

n−1
(b(V n−2:n−1, Fn′

)) for any n′ > n − 1, as bids are below values in n′ bidder auctions, too.

Consequently, �(n) ≤ EFn (b(V n:n, Fn)) − supn′ EFn′
n−1

(b(V n−2:n−1, Fn′
)).

As with ascending auctions, the bidder exclusion effect can be used to test for dependence between valuations
and N in first-price auctions. Under the null hypothesis that valuations and N are independent, for all n ≥ 2, Fn

n−1 =
Fn−1

n−1 = Fn−1. This implies that the bidder exclusion effect �(n) ≡ EFn (b(V n:n, Fn)) − EFn
n−1

(b(V n−1:n−1, Fn
n−1)) equals

EFn (b(V n:n, Fn)) − EFn−1 (b(V n−1:n−1, Fn−1)). If the sample analog of EFn (b(V n:n, Fn)) − EFn−1 (b(V n−1:n−1, Fn−1))—
which is simply average revenue in n bidder auctions minus average revenue in n − 1 bidder auctions—lies outside the
sample analogs of the lower or upper bounds of Corollary 2, this is evidence against the null hypothesis. This test is
consistent against violations of the null when values are “sufficiently” decreasing or increasing with n. Precisely, this is the
case if EFn−1 (b(V n−1:n−1, Fn−1)) > EFn

n−1
(b(V n−1:n−1, Fn)) or EFn−1 (b(V n−1:n−1, Fn−1)) < EFn

n−1
(b(V n−2:n−1, Fn)). Again,

the regression-based test of Section 6 can be modified to test that the null hypothesis holds conditional on observable
covariates, rather than unconditionally.

29 Pinkse and Tan (2005) give conditions for this to hold.
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The application to optimal mechanism design also works for first-price auctions. The Bulow-Klemperer theorem is
stated for ascending auctions, but by revenue equivalence also applies to first-price auctions when bidders have symmetric
IPV (or symmetric CIPV). Thus, Proposition 1 extends to first-price auctions, where the upper bound on the effect on
expected revenue of improving mechanism design is given by Corollary 2. We do not extend the merger analysis to
first-price auctions.

� Haile and Tamer (2003) setting. Haile and Tamer (2003) make the following assumption:

Assumption 2. Bidders (i) do not bid more than they are willing to pay, and (ii) do not allow an opponent to win at a price
they are willing to beat.

As in the body of the article, Bk:n represents the (k : n) order statisic of bids. In a nonbutton auction setting, these
bids are the last indication of willingness-to-pay by a bidder. As in Haile and Tamer (2003), we use Bn:n to denote the final
price of the auction, which can exceed the willingness-to-pay of the second-highest value bidder due to jump bidding or
bid increments. Let Bn−1:n−1,n represent the final auction price when one bidder is randomly removed from an n bidder
auction.

We again use the notation �(n) to denote the bidder exclusion effect, that is, the expected drop in revenue when a
random bidder is excluded, which in this setting will be given by

�(n) ≡ E(Bn:n) − E(Bn−1:n−1,n).

In addition to Assumption 2, we make the following assumption:

Assumption 3. Removing one of the n − 2 lower bidders from the auction does not affect the auction price.

Assumption 3 is unnecessary in the results stated in the body of the article, but in the Haile and Tamer (2003) case,
the conditions in Assumption 2 are weak enough that they do not rule out some cases that could lead to a change in the
final price at the auction. For example, it might be the case that the top bidder’s likelihood of jump bidding is lower when
one of the n − 2 bidders is removed. However, Assumption 3 is also quite weak in practice, as the final price is set by
back and forth activity between the top two bidders and hence is unlikely to be affected by dropped one of the n − 2
lowest bidders.

We now state our result for this setting. Let τ represent the minimum bid increment.

Proposition 5. In private values ascending auctions, if Assumptions 2 and 3 hold, then for all n > 2, the bidder exclusion
effect �(n) ≤ 2

n
E[Bn:n − (Bn−2:n − τ )].

Proof. With probability n−2
n

, dropping a random bidder will have no effect on revenue, by Assumption 3, which will
remain at Bn:n . With probability 2

n
, one of the highest two bidders will be dropped. In this case, Bn−1:n−1,n ≥ V n−2:n − τ ,

because, if not, the (n − 2 : n) bidder would have bid higher than Bn−1:n−1,n by Assumption 2(ii). It is then also true that
Bn−1:n−1,n ≥ Bn−2:n − τ by Assumption 2(i). Therefore, the drop in revenue from removing a random bidder, �(n), is
bounded weakly above by 2

n
E[Bn:n − (Bn−2:n − τ )]. �

� Asymmetric bidders. We give sufficient conditions for valuations to be independent of N with asymmetric
bidders and private values, following the setup of Coey et al. (2017). Let N be the full set of potential bidders. Let P
be a random vector representing the identities or types of bidders participating in an auction, with realizations P ⊂ N.
Let N be a random variable representing the number of bidders participating in an auction, with realizations n ∈ N.
When necessary to clarify the number of bidders in a set of participating bidders, we let Pn denote an arbitrary set of n
participating bidders. Define F P to be the joint distribution of (Vi )i∈P when P is the set of participating bidders.30 As
before, Fn represents the joint distribution of values conditional on there being n entrants, but unconditional on the set
of participants. Therefore, Fn(v1 . . . vn) = ∑

Pn ⊂N Pr(P = Pn |N = n)F Pn (v1 . . . vn). For P ′ ⊂ P , let F P ′ |P denote the
joint distribution of (Vi )i∈P ′ in auctions where P is the set of participants. Let F P

m denote the joint distribution of values
of m bidders drawn uniformly at random without replacement from P , when the set P enters, and let Fn

m(v1 . . . vn) =∑
Pn ⊂N Pr(P = Pn |N = n)F Pn

m (v1 . . . vn).
We consider a subset of bidders to be of the same type if they are exchangeable, in the sense that Fn(v1, . . . , vn) =

Fn(vσ (1), . . . , vσ (n)) for any permutation σ : {1, . . . , n} → {1, . . . , n} and any (v1, . . . , vn). Let Pr(Pn |Pn+1) denote the
probability that Pn would be obtained by dropping a bidder at random from Pn+1.31

30 We adopt the convention that bidders are ordered according to their identities, that is, if P = {2, 5, 12}, then F P

is the joint distribution of (V2, V5, V12), rather than, for example, the joint distribution of (V5, V2, V12).
31 For example, consider a case with two types, H and L . Then, Pr({2H, 2L}|{3H, 2L}) = 3

5
,

Pr({3H, 2L}|{3H, 3L}) = 1
2
, etc. If instead, each bidder is a distinct type, then for any n, Pr(Pn |Pn+1) = 1

n+1
for all
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Definition 1. Valuations are independent of supersets if for all P ′ ⊂ P , F P ′ |P = F P ′
.

Definition 2. Bidder types are independent of N if, for all Pn , Pr(P = Pn |N = n) = ∑
Pn+1⊃Pn

Pr(Pn |Pn+1) Pr(P =
Pn+1|N = n + 1).

These definitions describe different kinds of exogeneity. Definition 1 requires that conditional on some set of bidders
participating, those bidders’ values are independent of which other bidders participate (what Athey and Haile, 2002, refer
to as exogenous participation). Definition 2 requires that the distribution of participating bidder types in n bidder auctions
is just like the distribution of participating bidder types in n + 1 bidder auctions, with one bidder randomly removed. It
restricts who participates, but not what their values are. Coey et al. (2017) demonstrate that one immediate implication
of this condition is that for any bidder type τ , the expected fraction of bidders that are of type τ should be constant across
realizations of N . The following proposition shows that together, these conditions imply that valuations are independent
of N . Consequently, evidence of dependence of valuations and N suggests either that valuations are not independent of
supersets, or that bidder types are not independent of N .

Proposition 6. If valuations are independent of supersets and bidder types are independent of N , then valuations are
independent of N .

Proof. The proof follows Coey et al. (2017). It suffices to prove that Fn
m = Fn+1

m for any n ≥ m.

Fn
m(v) =

∑
Pn

Pr(P = Pn |N = n)F Pn
m (v)

=
∑

Pn

∑
Pn+1⊃Pn

Pr(Pn |Pn+1) Pr(P = Pn+1|N = n + 1)F Pn
m (v)

=
∑
Pn+1

∑
Pn ⊂Pn+1

Pr(Pn |Pn+1) Pr(P = Pn+1|N = n + 1)F Pn
m (v)

=
∑
Pn+1

∑
Pn ⊂Pn+1

Pr(Pn |Pn+1) Pr(P = Pn+1|N = n + 1)F Pn |Pn+1
m (v)

=
∑
Pn+1

Pr(P = Pn+1|N = n + 1)F Pn+1
m (v)

= Fn+1
m (v).

The second equality follows because bidder types are independent of N . The fourth equality follows because F Pn =
F Pn |Pn+1 , as valuations are independent of supersets. The fifth equality follows because randomly selecting m bidders from
n + 1 bidders is the same as randomly selecting n bidders from n + 1 bidders, and then randomly selecting m bidders
from those n bidders. �

� Monte Carlo power simulations. For some evidence on how powerful our test is, we compare it to another test,
which simply compares bidders’ mean values in n and n + 1 bidder auctions. This latter test requires the econometrician
to observe all bidders’ values. Relative to our test based on the bidder exclusion effect, it requires more data, and does not
allow for low bidding. Furthermore, this mean comparison test is not actually feasible in ascending auctions in practice
given that the highest bid is never observed.

In our simulation, there are 10 potential bidders, who have i.i.d. lognormal private values drawn from ln N (θ, 1),
where θ is itself a random variable. All potential bidders see a common signal δ = θ + ε, and Bayes update on the value
of θ given their observation of δ. The random variables (δ, θ, ε) are jointly normally distributed:⎛

⎝ δ

θ

ε

⎞
⎠ ∼ N

⎛
⎝

⎛
⎝ 0

0
0

⎞
⎠,

⎛
⎝ 1 + σ 2

ε , 1, σ 2
ε

1, 1, 0
σ 2

ε , 0, σ 2
ε

⎞
⎠

⎞
⎠ . (B9)

As σε increases, the ratio of noise to signal increases, and the variable δ becomes less informative about the variable θ . To
learn their value and bid in the ascending auction, potential bidders must pay an entry cost of 0.5. They play mixed-entry
strategies, entering with a probability p that depends on δ. Thus, this is a model of conditionally independent private
values, where bidders do not know their own valuation until after paying an entry fee. In the limit as σε → ∞, the signal
δ is uninformative about θ , and the entry probability p no longer varies with δ. This limiting case corresponds to the
entry model of Levin and Smith (1994).

n. To see this, fix Pn and note that for each Pn+1 ⊃ Pn , Pn is obtained by dropping the bidder Pn+1 \ Pn from Pn+1. When
bidders are dropped uniformly at random, this occurs with probability 1

n+1
.
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For each σε ∈ {1, 1.25, 1.5, . . . , 7}, and for n ∈ {3, 4}, we generate 1000 data sets with auctions in which n or n + 1
bidders choose to enter. Each data set contains 500 n bidder auctions and 500 n + 1 bidder auctions. We calculate the
probability of rejecting the null hypothesis of no dependence betweeen valuations and the number of bidders at the 5%
level over the 1000 data sets, for each value of σε and n, and for both bidder exclusion test and the comparison of means
test. Figure B1 shows the rejection probabilities as a function of σε . The comparison of means uses more data (in the
case of Panel (A), all three bids from n = 3 auctions and all four bids from n = 4 auctions; and, in the case of Panel (B),
all four bids from n = 4 auctions and all five bids from n = 5 auctions), and is more powerful. The simulation results
suggest that when not all bidders’ values are observed and the comparison of means test is infeasible (as in ascending
auctions), the bidder exclusion-based test is a reasonably powerful alternative, especially when the dependence between
valuations and the number of bidders is stronger (corresponding in this model to low values of σε).
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